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ABSTRACT 1/4.86 1/4.16 3/5.16

We describe a lattice generation method that is exact tisatisfies
all the natural properties we would want from a lattice otaib-
tive transcriptions of an utterance. This method does rtobdince
substantial overhead above one-best decoding. Our mesidst — Fig 1. AcceptorU describing the acoustic scores of an utterance
directly applicable when using WFST decoders where the WIBST
“fully expanded”, i.e. where the arcs correspond to HMM sian
tions. It outputs lattices that include HMM-state-levegaments as
well as word labels. The general idea is to create a statdkttice
during decoding, and to do a special form of determinizathoat

where H, C, L and G represent the HMM structure, phonetic
context-dependency, lexicon and grammar respectivelg, cais

. . ‘ WEFST composition (note: view/CLG as a single symbol). For
retains only the best-scoring path for each word sequente.spe-  gncreteness we will speak of “costs” rather than weightsere a
cial determinization algorithm is a solution to the follm\giproblem: cost is a floating point number that typically represents gatesl
Given a WFST A, compute a WEST B that, for each input-symbol-jqq_nropability. A WFST has a set of states with one distiaged
sequence of A, contains just the lowest-cost path through A. start stat& each state has a final-cost (ar for non-final states);

Index Terms— Speech Recognition, Lattice Generation and there is a set of arcs between the states, where eachsaao ha
input label, an output label, and a weight (just think of thésa cost
1. INTRODUCTION for now). In HCLG, the input labels are the identifiers of context-

dependent HMM states, and the output labels represent wenats
In Section 2 we give a Weighted Finite State Transducer (WFSThoth the input and output labels, the special symboiay appear,
interpretation of the speech-recognition decoding probli@ order  meaning “no label is present.”
to introduce notation for the rest of the paper. In Sectiore3iefine |magine we want to “decode” an utterancé]bframesy i.e. we
the lattice generation problem, and in Section 4 we revievipus  want to find the most likely word sequence and its correspandi
work. In Section 5 we give an overview of our method, and in-Sec state-level alignment. A WFST interpretation of the dengdprob-
tion 6 we summarize some aspects of a determinization &gori |em is as follows. We construct an acceptor, or WFSA, as in Fig
that we use in our method. In Section 7 we give experimental re(an acceptor is represented as a WFST with identical inpdibat:

sults, and in Section 8 we conclude. put symbols). It hag'+1 states, with an arc for each combination
of (time, context-dependent HMM state). The costs on these a
2. WFSTS AND THE DECODING PROBLEM correspond to negated and scaled acoustic log-likelihoGa$ this

The graph creation process we use in our toolkit, Kaldi [dvery acceptort/. Define

close to the standard recipe described in [2], where the N&ig S=Ue HCLG, )
Finite State Transducer (WFST) decoding graph is which we call thesearch graplof the utterance. It has approximately
T+1 times more states thallCLG itself. The decoding problem is
HCLG = min(det(H o C o Lo G)), (1)  equivalent to finding the best path through The input symbol se-

_ quence for this best path represents the state-level afighrand the
Thanks to Honz&ernocky, Renata Kohlova, and Tomas Kasparek forgutput symbol sequence is the corresponding sentence.attiqe
their help relating to the Kaldi'11 workshop at BUT, and tofe@v Khudan-  \ye do not do a full search o, but use beam pruning. Let be

pur for his help in preparing the paper. Researchers at BUE partly sup- .
ported by Technology Agency of the Czech Republic grant M®TD11328, the searched subset §f containing a subset of the states and arcs

Czech Ministry of Education project No. MSM0021630528, aacant ~ Of S obtained by some heuristic pruning procedure. When we do
Agency of the Czech Republic project No. 102/08/0707. Ar@diwshal  Viterbi decoding with beam-pruning, we are finding the besthp

was supported by EC FP7 grant 213850 (SCALE), and by EPSR& gra
EP/1031022/1 (NST). 1This is the formulation that corresponds best with the tibolie use.




throughB. Since the beam pruning is a part of any practical searctword-pair assumptiomwf [5]. This is the notion that the time bound-

procedure and cannot easily be avoided, we will define theeatkes
outcome of lattice generation in terms of the visited sulisef S.

3. THE LATTICE GENERATION PROBLEM

There is no generally accepted single definition of a lattice[3]
and [4], it is defined as a labeled, weighted, directed acygriaph
(i.e. a WFSA, with word labels). In [5], time information i¢sa
included. Inthe HTK lattice format [6], phone-level timégments
are also supported (along with separate language modalstco
and pronunciation-probability scores), and in [7], HMMst-level
alignments are also produced. In our work here we will be pcoed
ing state-level alignments; in fact, the input-symbols on graph,
which we calltransition-ids are slightly more fine-grained than
acoustic states and contain sufficient information to retoct the
phone sequence.

There s, as far as we know, no generally accepted probldet sta

ment for lattice generation, but all the the authors we citedm
to be concerned with the accuracy of the information in thicka
(e.g. that the scores and alignments are correct) and thpletan
ness of such information (e.g. that no high-scoring wormglisaces
are missing). The simplest way to formalize these concertws éx-
press them in terms of a lattice pruning beam> 0 (interpret this
as a log likelihood difference).

ary between a pair of words is not affected by the identitynyfear-
lier words. In a decoder in which there is a different copyhef lexi-
cal tree for each preceding word, assuming the word-paimaggon
holds, in order to generate an accurate lattice, it is sefiidio store
a single Viterbi back-pointer at the word level; the entiee af such
back-pointers contains enough information to generatddttiee.
Authors who have used this type of lattice generation mef&pf]
have generally not been able to evaluate how correct the-paird
assumption is in practice, but it seems unlikely to causélpros.
Such methods are not applicable for WFST based decodersagnyw
The lattice generation method described in [3] is applieabl
decoders that use WFSTSs [2] expanded down toCthkevel (i.e.

CLG@G), so the input symbols represent context-dependent phones

In WFEST based decoding networks, states normally do not have
unique one-word history, but the authors of [3] were ableatisfy/

a similar condition at the phone level. Their method was twest
a single Viterbi back-pointer at the phone level; use thisreate a
phone-level latice; prune the resulting lattice; projetd leave only
word labels; and then removesymbols and determinize. Note that
the form of pruning referred to here is not the same as beaningu
as it takes account of both the forward and backward parteeof t
cost. The paper also reported experiments with an acctirafer-
ence” method that did not require any phone-pair assumpti@se
experiments showed that the main method they were desgfitzid

e The lattice should have a path for every word sequence withiimost the same lattice oracle error rate as the referentieothe

« of the best-scoring one.

However, the experiments did not evaluate how much impacash

e The scores and alignments in the lattice should be accurate.SUmption had on the accuracy of the scores, and this infmat

e The lattice should not contain duplicate paths with the same

word sequence.

could be important in some applications.
The lattice generation algorithm that was described ing&p-
plicable to WFSTs expanded down to tHelevel (i.e. HCLG), so

We need to be a little more precise about what we mean by thessco the input symbols represent context-dependent statesefiskboth

and alignments being “accurate”. Let the latticelheThe way we
would like to state this requirement is:

e For every path in_, the score and alignment corresponds to

the best-scoring path i3 for the corresponding word se-
quencé.

The way we actually have to state the requirement in ordeetaugy
efficient procedure is:

e For every word-sequence i within « of the best one, the
score and alignment for the corresponding patfh iis accu-
rate.

e All scores and alignments i, correspond to actual paths

through B (but not always necessarily the best ones).

The issue is that we want to be able to prundefore generating a
lattice from it, but doing so could cause paths not withiof the best
one to be lost, so we have to weaken the condition. This is eatgr
loss, since regardless of pruning, any word-sequence o of
the best one could be omitted altogether, which is the sarbeing

assigned a cost ab). By “word-sequence” we mean a sequence of

whatever symbols are on the output/t’LG. In our experiments
these output symbols represent words, but silences do petaps
output symbols (they are represented via alternative paths.

4. PREVIOUS LATTICE GENERATION METHODS

Lattice generation algorithms tend to be closely linkedddipular
types of decoder, but are often justified by the same kinddezs.
A common assumption underlying lattice generation mett®tise

20r one of the best-scoring paths, in case of a tie.

scores and state-level alignment information. In someesdhis al-
gorithm also relies on the word-pair assumption, but siheecbpies
of the lexical tree in the decoding graph do not have uniquedwo
histories, the resulting algorithm has to be quite différeviiterbi
back-pointers at the word level are used, but the algoritleepk
track of not just a single back-pointer in each state, butXhkest
back-pointers for theV top-scoring distinct word histories. There-
fore, this algorithm has more in common with the sentenceebt-b
algorithm than with the Viterbi algorithm. By limitingy to be quite
small (e.g. N=5), the algorithm was made efficient, but at the cost
of losing word sequences that would be within the latticeegation
beam.

5. OVERVIEW OF OUR ALGORITHM

5.1. Version without alignments

In order to explain our algorithm in the easiest way, we wiltfi
explain how it would be if we did not keep the alignment infarm
tion, and were storing only a single cost (i.e. the total atioplus
language-model cost). This is just for didactic purposesheve not
implemented this simple version. In this case, our algoritkould
be quite similar to [3], except at the state level rather tienphone
level. We actually store forward rather than backward ot for
each active state on each frame, we create a forward linkddop
each active arc out of that state; this points to the recarthiodes-
tination state of the arc on the next frame (or on the curnemhé,
for e-input arcs). As in [3], at the end of the utterance, we priee t
resulting graph to discard any paths that are not within e
of the best cost. Let the pruned graphBgi.e.

P = prune(B, a), )



whereB is the un-pruned state-level lattice. We project on thewutp
labels (i.e. we keep only the word labels), then remewescs and
determinize. In fact, we use a determinization algorithat ttoes
removal itself.

As in [3], to save memory, we actually do the pruning period-

ically rather than waiting for the end of the file (we do it ey@5
frames). Our method is equivalent to their method of linkatigeur-
rently active states to a “dummy” final state and then pruiminigpe
normal way. However, we implement it in such a way that thenpru
ing algorithm does not always have to go back to the beginafng
the utterance. For each still-active state, we store thedifésrence
between the best path including that state, and the bestlbpeth.
This quantity does not always change between differerdtitars of
calling the pruning algorithm, and when we detect that thyesanti-
ties are unchanged for a particular frame, the pruning dlgorcan
stop going backward in time.

After the determinization phase, we prune again using thenbe
«a. This is needed because the determinization process gan int
duce a lot of unlikely arcs. In fact, for particular utterasc the
determinization process can cause the lattice to expandganim
exhaust memory. To deal with this, we currently just detelsenv
determinization has produced more than a pre-set maximunbeu
of states, then we prune with a tighter beam and try again.

This “simple” version of the algorithm produces an acyadtie;
terministic WFSA with words as labels. This is sufficient &ppli-
cations such as language-model rescoring.

5.2. Keeping separate graph and acoustic costs

A fairly trivial extension of the algorithm described abadsgeo store
separately the acoustic costs and the costs arising #6thG. This
enables us to do things like generating output from theckattvith
different acoustic scaling factors. We refer to these twatsas the
graph cost and the acoustic cost, since the cCo#tdii. G is not just
the language model cost but also contains components gfisim
transition probabilities and pronunciation probabibtieNe imple-
ment this by using a semiring that contains two real numbers,
for the graph and one for the acoustic costs; it keeps trattkedfvo
costs separately, but its operation returns whichever pair has the
lowest sum of costs (graph plus acoustic).

Formally, if each weight is a paiia, b), then(a,b) ® (¢, d) =
(a+c,b+d), and(a,b) & (c,d) is equal to(a, b) if a+b < c+d or
if a+b = c+d anda—b < c—d, and otherwise is equal 1@, d).
This is equivalent to the normal lexicographic semiringe(E8) on
the pair((a+b), (a—b)).

5.3. Keeping state-level alignments

It is useful for various purposes, e.g. discriminativeriag and
certain kinds of acoustic rescoring, to keep the state-ignments
in the lattices. We will now explain how we can make the aligmts
“piggyback” on top of the computation defined above, by einugpd
them in a special semiring.

First, let us defing) = inv(P), i.e. @ is the inverted, pruned
state-level lattice, where the input symbols are the wondglae out-
put symbols are the p.d.f. labels. We want to procggssuch a way
that we keep only the best path through it for each word semgjen
and get the corresponding alignment. This is possible byidefi
an appropriate semiring and then doing normal determioizatVe
shall ignore the fact that we are keeping track of separaehgand
acoustic costs, to avoid complicating the present disonssi

(c,s)® (c,s") = (c+ ', (s,5")), where(s, s") is a concatenation
of s ands’. We define the® operation so that it returns whichever
pair has the smallest cost: that {g, s) ® (c’,s’) equals(c, s) if

c < d,and(d,s’) if ¢ > . If the costs are identical, we can-
not arbitrarily return the first pair because this would rettssy the
semiring axioms. In this case, we return the pair with therteino
string part, and if the lengths are the same, whichevergséppears
first in dictionary order.

Let E be an encoding of the inverted state-level lattigas de-
scribed above, with the same number of states and d&ds; an
acceptor, with its symbols equal to the input symbol (wond)ttee
corresponding arc ap, and the weights on the arcs Bfcontaining
both the weight and the output symbol (p.d.f.), if any, on ¢be-
responding arcs af). Let D = det(rmeps(F)). Determinization
will always succeed becaudg is acyclic (as long as the original
decoding graphHCLG has noe-input cycles). Becaus® is de-
terministic ande-free, it has only one path for each word sequence.
Determinization preserves equivalence, and equivalenckefined
in such a way that the>-sum of the weights of all the paths through
FE with a particular word-sequence, must be the same as thétveig
of the corresponding path throudh with that word-sequence. It is
clear from the definition ofp that this path througtD has the cost
and alignment of the lowest-cost path throujithat has the same
word-sequence on it.

5.4. Summary of our algorithm

During decoding, we create a data-structure corresportdiagfull
state-level lattice. That is, for every arc BfCLG, we traverse on
every frame, we create a separate arc in the state-leveklalthese
arcs contain the acoustic and graph costs separately. e ine
state-level graph using a beam we do this periodically (every 25
frames) but this is equivalent to doing it just once at the asdn [3].
Let the final pruned state-level lattice be Let Q@ = inv(P), and
let E be an encoded version ¢f as described above (with the state
labels as part of the weights). The final lattice is

L = prune(det(rmeps(F)), o). 4)
The determinization and epsilon removal are done togethardin-
gle algorithm that we will describe belowl is a deterministic,
acyclic weighted acceptor with the words as the labels, aadtaph
and acoustic costs and the alignments encoded into the iseifje
costs and alignments are not “synchronized” with the words.

6. DETAILS OF OUR DETERMINIZATION ALGORITHM

We implemented removal and determinization as a single algorithm
because-removal using the traditional approach would greatly in-
crease the size of the state-level lattice (this is mentiamé3]). Our
algorithm uses data-structures specialized for the pdatidype of
weight we are using. The issue is that the determinizatiocgss
often has to append a single symbol to a string of symbols tfzend
easiest way to do this in “generic” code would involve cogythe
whole sequence each time. Instead we use a data structtientha
ables this to be done in linear time (it involves a hash table)

We will briefly describe another unique aspect of our aldonit
Determinization algorithms involve weighted subsets afest, e.g.:

S:{(Sl,wl),(SQ,wz),...}. (5)

Let this weighted subset, as it appears in a conventionatéatiza-
tion algorithm with epsilon removal, be tlsanonical representation

We will define a semiring in which symbol sequences are enof a state. A typical determinization algorithm would maint a

coded into the weights. Let a weight be a pairs), wherec is a
cost ands is a sequence of symbols. We define theperation as

map from this representation to a state index. We defiménémial
representatiorof a state to be like the canonical representation, but
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only keeping states that are either final, or have a@mes out of ing beam,leavingy fixed at_ 7. Lattice density is defined as the aver-
them. We maintain a map from the minimal representation ¢o th @€ number of arcs crossing each frame. We get all the imprene
state index. We can show that this algorithm is still cor@anill ~ from LM rescoring by increasing to 4, and time taken increases
tend to give more minimal output). As an optimization forepe apidly whena > 8, so we recommend roughly < a < 8 for

we also define thinitial representatiorto be the same type of sub- LM rescoring purposes. We do not display the real-time faofo
set, but prior to following through the arcs, i.e. it only contains ~the non-lattice-generating decoder on this data (2.26xT) was
the states that we reached by following noafcs from a previous actually slower than the lattice generating decoder; #isossibly

determinized state. We maintain a separate map from thalireép-
resentation to the output state index; think of this as akémside

due to the overhead of reference counting. Out of vocalyulestds
(O0Vs) provide a floor on the lattice oracle error rate: of 838 ut-
terances, 87 contained at least one OOV word, yet only 9&sees

buffer” that helps us avoid the expense of followingrcs.

Since submitting this paper, we have become aware of [10](6 more) had oracle errors with = 10.

which solves the exact same problem for a different purpdbey
use a semiring which is more complicated than ours (thegsprart
of the semiring becomes a structured object with parenthesbey
use this semiring instead of the one we describe here, betaosr

8. CONCLUSIONS

We have described a lattice generation method that is to roowlk
edge the first efficient method that does not rely on the waiid-p

semiring thes-sum of two weights does not necessarily left-divide @Ssumption of [5]. Itincludes an ingenious way of obtairkigM-

the weights, and this is a problem for a typical determiniratl-

state-level alignment information via determinizatioreiispecially

gorithm. We bypass this problem by defining a “common divisor designed semiring.

operationd with the right properties (itc-adds the weight part and
returns the longest common prefix of the string part). We bhie t

instead ofp when finding divisors in the determinization algorithm. [1]

7. EXPERIMENTAL RESULTS 2]

We do not compare with any other algorithms, as [5, 8, 3] are de
signed for different types of decoders than ours, and thedat
contain less information, making comparisons hard to prtr the
algorithm of [7] has similar requirements and outputs asobut
besides being inexact, it is bound to be slower due to the twed
storeN back-pointers, so we did not view it as worthwhile to do the [5]
experiment.

We report experimental results on the Wall Street Journal
database of read speech. Our system is a standard mixture-of6]
Gaussians system trained on the SI-284 training data; weotes
the November 1992 evaluation data. We generated latticés wi [7]
the bigram language model supplied with the WSJ databask, an
for rescoring experiments we use the trigram language mdded
acoustic scale was/16 for first-pass decoding antl/15 for LM
rescoring. For simplicity, we used a decoder that does nupt
a “maximum active states” option, so the only variables tosider
are the beam used in the Viterbi beam search, and the sepaeate
« used for lattice generation.

Figure 2 shows how the lattice properties change as wewary
with the Viterbi beam fixed at 15; Figure 3 varies the Viterbcdd-

(3]
(4]

(8]
9]

(10]
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