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ABSTRACT

Provides an overview of a speech-to-text (STT) and keyword
search (KWS) system architecture build primarily on the top
of the Kaldi toolkit and expands on a few highlights. The
system was developed as a part of the research efforts of the
Radical team while participating in the IARPA Babel pro-
gram. Our aim was to develop a general system pipeline
which could be easily and rapidly deployed in any language,
independently on the language script and phonological and
linguistic features of the language.

Index Terms— Kaldi, spoken term detection, keyword
search, speech recognition, deep neural networks, pitch,
IARPA BABEL, OpenKWS

1. BACKGROUND

The IARPA BABEL program aims to achieve the capability
to rapidly develop speech-to-text (STT) and keyword search
(KWS) systems in new languages with limited linguistic
resources—transcribed speech, pronunciation lexicon and
matched text—with emphasis on conversational speech.

The four BABEL program participants were evaluated
by NIST via two benchmark tests: on five development lan-
guages and on a surprise language revealed only at the be-
ginning of the evaluation period. The development languages
were Assamese, Bengali, Haitian Creole, Lao and Zulu, and
the surprise language was Tamil. Eight additional teams
worldwide participated in the surprise language evaluation.

The primary 2014 evaluation was on KWS performance
using systems trained on an IARPA-provided limited language
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pack (LimitedLP) containing 10 hours of transcribed speech,
a dictionary that covered words in the transcripts, 70 hours
of un-transcribed speech for unsupervised training, and 10
hours of transcribed speech for development-testing. A sec-
ondary evaluation was on KWS performance using a full lan-
guage pack (FullLP), in which transcripts and dictionary en-
tries were provided for an additional 50 of the 70 hours of
un-transcribed speech: total 60 hours transcribed.1

The test data provided by NIST contained 15 hours of
speech for each development language, 75 hours for the sur-
prise language, and a list of ca 3000 keywords for each lan-
guage. The primary KWS evaluation metric was actual term
weighted value (ATWV), and the BABEL program goal for
2014 was to attain an ATWV of 0.30 in the LimitedLP train-
ing condition on all six languages.

This paper describes the system submitted to NIST by the
JHU Kaldi team. It is expected to interest readers because the
submitted system attained all the program goals, enabling the
RADICAL team to achieve third place worldwide, and because
9 of the top 10 participants in the NIST evaluation used Kaldi
components/recipes2 in their submitted system.

2. JHU KALDI SYSTEMS OVERVIEW

The Kaldi KWS system is comprised of LVCSR based lattice
generation followed by OpenFST based indexing and key-
word search. LVCSR systems based on four different acoustic
models are used to decode and index the speech:

1. A subspace Gaussian mixture model (SGMM) of
the type described in [1], trained discriminatively via

1The exact corpus identifiers are
Assamese, IARPA-babel102b-v0.4;
Bengali, IARPA-babel103b-v0.3;
Haitian Creole, IARPA-babel201b-v0.2b;
Lao, IARPA-babel203b-v3.1a;
Tamil, IARPA-babel204b-v1.1b;
Zulu, IARPA-babel206b-v0.1e.

2Available via http://kaldi.sourceforge.net/.



Fig. 1. Schematic diagram the JHU Kaldi systems described in Section 2 (with some novel components highlighted).

boosted MMI [2].

2. A deep neural network (DNN) with p-norm activation,
as described in [3]. For the LimitedLP condition, an
novel ensemble training method, describe below, pro-
vides improved performance.

3. A model trained on bottleneck features (BNF) ex-
tracted from a DNN. The 42-dim bottleneck features
are used in a tandem SGMM system, again trained
discriminatively via BMMI.

4a. A BNF model with semi-supervised training on 50
hours of un-transcribed speech (BNF-SEMISUP). The
automatic transcripts were obtained using the Limit-
edLP SGMM and DNN models. BNF-SEMISUP was
used only in the LimitedLP training condition.

4b. A “sequence-trained” deep neural network, trained us-
ing a state-level minimum Bayes risk (DNN-SMBR)
criterion. Sequence training did not improve DNN per-
formance in the LimitedLP condition. DNN-SMBR
was hence used only in the FullLP training condition

All LVCSR systems use one of two pronunciation lexicons:
the base lexicon for the appropriate (LimitedLP/FullLP) train-
ing condition, or an expanded lexicon generated as described
in Section 4.1. Language models for all LVCSR systems are
estimated from the appropriate training transcripts only, us-
ing the SRILM tools. This results in a total of 4×2×1 = 8
STT decoding runs each in the LimitedLP and FullLP condi-
tions for each language.

The Kaldi KWS pipeline is based on lattice-indexing as
described in [4], and utilizes as its input the exact lattice gen-
eration method described in [5]. Two additional strategies are
used to handle out of vocabulary (OOV) keywords:

1. One is to search for phonetically similar in-vocabulary
words (i.e. proxy keywords) for each OOV keyword, as
described in [6]. The novelty in the 2014 system be-
yond [6] is that due to the vastly increased vocabulary

when using an expanded lexicon, proxy-based search
has the opportunity to be more effective, but straight-
forward search becomes computationally prohibitive.
Several optimizations, including lazy composition,
breaking down the search into several steps, and inter-
mediate pruning have been implemented to reduce the
memory footprint and run time of the FSTs.

2. The other is a novel Poisson point process model
(PPM), as described in [7]. This method bypasses
most of the STT modules, using only the DNN outputs
as its input, and is agnostic to the keyword being OOV.

To obtain the final submission to NIST, outputs from vari-
ous individual systems are combined. For STT, lattice-level
combination of 4 to 8 STT systems is performed, while for
the KWS task, the ranked lists of several systems and KWS
search-strategies are combined, as detailed in Section 6.

Code and scripts used for almost all results reported
here are available via svn://svn.code.sf.net/p/
kaldi/code/trunk/. Scripts under egs/babel/s5b
were used to build the JHU Kaldi systems, and by other
participants who submitted systems to NIST.

3. JHU KALDI INNOVATIONS IN 2014

A few notable innovations in the 2014 JHU Kaldi systems
relative to the 2013 release (which was also made available
via SourceForge under egs/babel/s5) are as follows.

1. All JHU Kaldi systems now use pitch and probability-
of-voicing features along with PLPs. Their extraction
procedure is described in [8], and their inclusion im-
proves STT and KWS performance on all languages
and in both training conditions.

2. All DNNs now use units with the novel p-norm acti-
vation function described in [3]. This results in mod-
est but consistent (1%-2% absolute) improvement in



Language
LimitedLP WER LimitedLP MTWV

normal ensemble normal ensemble
Tamil 76.9% 75.7% 0.193 0.212

Assamese 65.2% 63.8% 0.224 0.241
Bengali 67.6% 66.2% 0.231 0.241

Zulu 70.1% 68.7% 0.249 0.268

Table 1. Performance of normal versus ensemble training of
a DNN. STT and KWS results are on the development sets of
four representative languages, and use the NIST keywords.

STT performance over the previous tanh-based DNNs
across all languages and training conditions.

3. A previously unpublished innovation in the systems of
Section 2 is ensemble training of DNNs. We found that
averaging the outputs of 4 independently trained DNNs
(differing only in their random initialization but trained
on the same data) results in a ca 1.5% reduction in STT
errors. In order not to have to use 4 DNNs at test-time,
we modified the training objective of the 4 networks,
whereby the desired output for each input is a mixture
of the original 1-of-N training target and the averaged
output of the 4 networks for that input. By thus nudging
the outputs of the 4 DNNs towards each other, we are
able to use only one of them at test-time and obtain
comparable gains, as demonstrated in Table 1.

4. BNF training has now been rewritten in C++, making
it faster and more accurate in terms of STT errors than
the previous Theano-based implementation. The ba-
sic design is unchanged: 42-dim bottleneck features are
extracted form the DNN and appended to fMLLR fea-
tures from a PLP-based system, three such augmented
frames are spliced together and reduced to 60-dim via
LDA, and an SGMM system is trained on the resulting
features. The speed-up comes largely from the abil-
ity to parallelize DNN training on multiple GPUs. The
consistent ca 0.5% reduction in STT errors is harder to
attribute to any one cause.

5. Semi-supervised acoustic model training has now been
implemented and is used for all languages in the Lim-
itedLP condition. The implementation is similar to that
of [9]. Specifically, unlabeled speech is decoded using
the SGMM and DNN systems, and their outputs are
combined. We use the resulting 1-best output as super-
vision for BNF training. Only frames whose state-level
label has a posterior probability above an empirically
determined threshold of 0.35 are used.

6. Another previously unpublished innovation is auto-
matic, syllable-based lexicon expansion, as described
in Section 4.1. Using a base lexicon with syllable
boundaries marked in the pronunciations, we stochas-
tically generate new syllable sequences, which we then
treat as pronunciations of unseen words in that lan-
guage. An orthographic form (i.e. a word-form) is

Language
FullLP WER FullLP MTWV

DNN DNN-SMBR DNN DNN-SMBR
Tamil 68.4% 67.4% 0.375 0.414

Assamese 53.4% 52.8% 0.421 0.456
Bengali 56.5% 56.4% 0.431 0.453

Zulu 60.3% 59.7% 0.460 0.473

Table 2. Performance of DNN versus DNN-SMBR (sequence)
training. STT and KWS results are on the development sets
of four representative languages, and use the NIST keywords.

generated for each such new pronunciation using a “re-
verse” G2P system trained on the base lexicon. About
2 million such “word”+pronunciation entries are gen-
erated for each language. The language model treats
them as unseen vocabulary items for purposes of prob-
ability assignment. The impact of this massive lexicon
expansion is language-dependent. e.g. it makes no
difference in Assamese and Bengali, but significantly
improves ATWV for Zulu in the Limited LP condition.
Its impact is more pronounced if a language model
with data-driven word classes is used (cf. Section 4.2).

4. LEXICON CREATION & LANGUAGE MODELING

We use the SRILM tools to build language models from the
training transcripts. Several n-gram models with different
smoothing methods and count cutoffs are built. The one with
the lowest perplexity on the development data is retained —
typically a Good-Turing 3-gram in the LimitedLP condition.

IARPA provided lexicons are used in all systems, with syl-
labic stress or tone converted into a “tag” attached to each
phoneme in that syllable. Another tag indicates whether a
phoneme is word-initial, word-final, etc. Questions concern-
ing these tags are permitted during triphone clustering.

In addition to phonemes in the IARPA-provided lexicon3,
four special phonemes are introduced: silence, noise,
vocalized-noise and unknown-word. The first two
are self-explanatory. The vocalized-noise phoneme models
coughs, laughter, etc. while the unknown-word phoneme
models out-of-vocabulary speech, such as unintelligible
words and un-transcribed foreign words, etc.

4.1. Lexicon Expansion to Enable OOV Keyword Search

We developed a novel syllable-based lexicon expansion
method, which is described next. The main idea is to auto-
matically generate millions of distinct lexicon entries whose
pronunciations are phonotactically plausible in that language.
An OOV (key)word in the test speech will then have a good

3For some languages, such as Vietnamese in the 2013 NIST evaluation
and Zulu in 2014, the IARPA-provided lexicon systematically re-labels a
phoneme as one of two or more variants based on context. We found in such
cases that it is beneficial to collapse such variants back into a single phoneme
and let the data-driven triphone clustering step decide whether multiple vari-
ants are warranted.



chance of begin decoded as a similar-sounding lexicon entry,
obviating the need for a separate phonetic decoding pass or
a separate subword index for OOV search. The word-lattices
may be searched directly for the OOV keyword, with the
proxy-based method of [6] to mitigate differences between
the correct spelling (of the keyword) and the spelling gener-
ated during this automatic lexicon expansion.

We first use the IARPA lexicon to estimate an n-gram
“language model” for syllable sequences that constitute
words in the language; this requires a syllabified lexicon.
Each pronunciation in the lexicon is treated as a “sentence”
and the syllables that constitute the pronunciation are treated
as atomic “words,” so that the syllable inventory becomes the
“vocabulary” of this “language model.” Once this statistical
language model has been estimated, it is used generatively
to simulate new “sentences” in the language: each simulated
“sentence” is the syllabic pronunciation of a potential word.

We discard syllable sequences that already exist in the
IARPA lexicon, retaining only OOV syllable sequences. We
also discard sequences comprised of very few phonemes. Up
to 2 million of the remainder, sorted by their syllabic “lan-
guage model” scores, are selected for addition to the lexicon.

The last step is to generate an orthographic form for each
selected syllable sequence. For this we resort to standard
G2P techniques in reverse: we treat each phoneme on the
pronunciation-side of the lexicon as a single orthographic
character (grapheme), and each orthographic character on the
word-side of the lexicon as a phoneme. We train a Sequitur
G2P system [10] using the IARPA lexicon in reverse, as de-
scribed above. We refer to it as the P2G system to remind
readers that its input is a phoneme sequence (instead of a
grapheme sequence), and its output is a sequence of char-
acters (instead of phonemes). Once trained, the P2G system
accepts each selected syllable sequence, viewed as a phoneme
sequence, and generates the needed orthographic form.

Since these orthographic forms are not seen in the lan-
guage model training text, they are inserted in to the lan-
guage model as unseen unigrams, and are assigned the uni-
gram probability of the unseen word (times the probability of
their pronunciation under the syllabic language model).

For the NIST evaluation, there were two versions of each
Kaldi decoding run described in Section 2, one with the base
lexicon and one with the expanded lexicon described above
(cf Figure 1). On the development data, the expanded lex-
icons provided some improvement in ATWV for some lan-
guages (e.g. Zulu), especially when used in conjunction with
the proxy-based KWS method for OOV keywords, and negli-
gible gain for other languages. We saw no degradation from
their use in any condition on the development data.

However, NIST reported a (≈ 0.2% WER) degradation
in STT performance for languages where we saw negligible
gains, while the languages that improved on the development
data continued to do so on evaluation data. We expect that the
degradation may be alleviated by tuning the total language

Language Lexicon LM WER ATWV
Zulu basic Word 3-gram 69.8% 0.26

expanded Word 3-gram 69.5% 0.27
expanded Word+Class LM 68.5% 0.32

Tamil basic Word 3-gram 75.7% 0.21
basic Word+Class LM 75.3% 0.23

expanded Word 3-gram 75.7% 0.20
expanded Word+Class LM 75.7% 0.25

Table 3. Performance of the LimitedLP DNN system with a
basic v/s expanded lexicon and a basic v/s class-based LM on
the respective development sets using NIST keywords.

model probability assigned to the new lexical entries.

4.2. Orthographic-Class Based Language Modeling

A shortcoming of the massive lexicon expansion of Section
4.1 is the arbitrary assignment of language model (LM) prob-
abilities to the new words. Class-based LMs, especially those
based on syntax or semantic word classes, are a good way to
selectively assign different probabilities in different contexts
to an otherwise indistinguishable set of unseen words. Our
investigations in this direction are described next.

A major hurdle in the limited resource setting is that nei-
ther data-driven techniques (e.g. Brown clustering [11]) nor
knowledge-based ones are feasible for creating word classes.
Furthermore, “words” resulting from the automatic expansion
are not guaranteed to be real words in the language. We there-
fore resort to simple, spelling-based clustering methods.

We created three such clusterings, estimated a class-based
LM for each clustering, and linearly interpolated them with
the baseline 3-gram LM and 2 other LMs:

1. a class-based LM, using the first three characters;
2. a class-based LM, using the first six characters;
3. a class-based LM, using the last three characters;
4. a skip bigram LM;
5. a word 3-gram LM whose absolute discounting param-

eters depend on the count level via a rational function.

Models 1-5 were implemented using Saarland University’s
LSVLM toolkit. To map the resulting LMs to ARPA format,
an artificial corpus of 30 million tokens was sampled using
model 5. A trigram tree was constructed and probabilities of
models 1-5 where written to the leafs of that tree.

This method is still under development/evaluation, but it
already seems from the preliminary results in Table 3 on two
languages (Zulu and Tamil) that the interpolated class-based
LM provides modest STT improvement, and somewhat more
significant KWS improvement in both languages. For Tamil,
the model 2 had the largest contribution for all experiments.
We note that the sampling/pooling steps in converting the
LSVLM to ARPA format must be performed carefully.

Finally, to obtain the results in Table 3, we only rescored
lattices generated by the DNN system (cf Section 2) using



Language
ATWV

PPM DNN DNN+PPM
Assamese 0.11 0.30 0.33
Bengali 0.09 0.28 0.31

Haitian Creole 0.15 0.35 0.38
Lao 0.15 0.37 0.40
Zulu 0.14 0.28 0.33
Tamil 0.08 0.25 0.27

Table 4. Performance of PPM-based versus word-based KWS
systems built on a LimitedLP DNN system, and KWS system
combination, on the evaluation set using the NIST keywords.

the interpolated LM. Incorporating the new LM into first-pass
decoding is likely to lead to further improvements.

5. POISSON POINT PROCESS MODELS FOR KWS

The point process model (PPM) for keyword search is a
whole-word, event-based acoustic modeling and phonetic
search technique [7, 12]. The PPM represents keywords as
a set of time-inhomogeneous Poisson point processes, one
process per phone. Therefore, if a PPM can be constructed
for a keyword, and the speech is indexed with corresponding
phonetic “events,” there is no OOV problem. We use either
dictionary or G2P-based pronunciations to seed the keyword
PPM, and the per-frame posterior probabilities generated
by our p-norm DNN to construct the phonetic event index.
Indexing is approximately 2×faster than real-time, and the
matching (search) is optimized so that it is extremely fast
(≈ 400,000× real time). Each detection is assigned a PPM
likelihood. The outstanding issue is the normalization of this
likelihood across keywords to enable the setting of a global
detection threshold. The performance of PPM itself is usually
on the par with other phonetic search systems but it combines
really well with the word-based systems, as shown in Table 4.

6. SYSTEM COMBINATION FOR STT AND KWS

Our final submissions to NIST employ combination of several
systems depicted in Figure 1 and described below.

6.1. System Combination for Speech to Text

The only system combination method used for the STT sub-
mission is the minimum Bayes risk (MBR) decoding method
described in [13], which we view as a systematic way to per-
form confusion network combination (CNC) [14]. Note that it
is nontrivial to perform MBR decoding when the vocabularies
of the systems are vastly different. We therefore combine the
STT outputs via MBR decoding4 of the 4 systems that use the
base lexicon (cf Section 2), and separately the 4 that use the

4A system-specific offset determined empirically is applied to the lan-
guage model weight for each system during decoding.

expanded lexicon. Table 5 shows a typical, modest reduction
in STT errors from system combination.

6.2. System Combination for Keyword Search

System combination for KWS is a basic merging, for each
keyword, of the ranked lists produced by the component
KWS systems. Putative hits are aligned across systems based
on proximity/overlap of time-spans, and the lattice posterior
probabilities5 of aligned putative hit are averaged across the
systems. If a putative hit does not appear in a system’s list,
that system is assumed to have assigned it zero probability.

Specifically, if a putative hit has scores {s1, s2, . . . , sN}
in the ranked lists of N independent KWS systems, where
some of the sn’s may be 0, the combined score of the hit is
defined to be

savg =

(
1

N

N∑
n=1

wns
p
n

) 1
p

, (1)

where p and the weights wn are determined empirically, and
are typically found to be around p = 0.5 and wn = 1. The
ranked list after KWS system combination therefore is the
union of the individual ranked lists sorted by savg.

Table 5 shows typical improvements from KWS system
combination for the 8 word-indexed systems described in
Section 2 and further combination with the PPM system
described in Section 5.

7. NIST EVALUATION RESULTS

The primary development language submissions of the JHU
Kaldi team in both the FullLP and the LimitedLP conditions
were combinations of 4 to 9 systems as described above. The
primary STT system was a combination of 4 STT systems
with expanded lexicons, as described in Section 6.1, while the
primary KWS system was a combination of 8 word-indexed
systems with the PPM system, as described in Section 6.2.

The primary surprise language submission was a com-
bination of the PPM system with 5 word-indexed KWS sys-
tems, each derived from an STT system with an expanded
lexicon. Two of these STT systems entailed lattice rescoring
with the interpolated class-based LM (cf Section 4.2). STT
system combination was not performed for the surprise lan-
guage due to some computational limitations.

Table 6 reports the official NIST evaluation of the primary
STT and KWS systems, demonstrating that the ambitious BA-
BEL goal of 0.30 ATWV in the LimitedLP condition is at-
tainable in all five development languages and in the surprise
language using the JHU Kaldi tools. Performance of other
systems (that also used these open source tools) that were sub-
mitted to NIST further attests to the quality of the tools.

5Averaging the lattice posteriors (without further normalization) was ade-
quate when combining various Kaldi KWS systems. Combining further with
non-Kaldi systems may benefit from normalizing scores within each ranked
list before merging.



system expanded lexicon basic lexicon
WER ATWV WER ATWV

DNN 64.2% 0.293 64.0% 0.303
PLP 65.9% 0.249 66.0% 0.243
BNF 63.4% 0.270 63.4% 0.265

BNF-SEMISUP 61.3% 0.277 61.5% 0.279
4-way combination 60.7% 0.343 60.6% 0.342

PPM — 0.108 — 0.108
8-way combination 0.353 ATWV

8-way + PPM 0.375 ATWV

Table 5. Performance of STT and KWS system combination
for Assamese on evaluation data, using NIST keywords.

Language
LimitedLP FullLP

WER ATWV WER ATWV
Assamese 60.6% 0.375 50.9% 0.532
Bengali 62.1% 0.355 52.8% 0.514

Haitian Creole 57.2% 0.433 48.1% 0.578
Lao 54.7% 0.437 45.0% 0.581
Zulu 67.1% 0.380 58.6% 0.484

Tamil — 0.313 — 0.457

Table 6. Official evaluation of STT and KWS performance of
the JHU Kaldi system on NIST data using NIST keywords.

8. CONCLUSION

We have described the design and implementation of state-of-
the-art STT and KWS systems using the Kaldi open source
tools, and outlined some innovations and capabilities we have
recently added to these tools. The STT performance is on
par with the best systems, and the KWS performance is re-
spectable. We hope that this information will enable further
improvement and/or fruitful deployment of the tools.
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