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Abstract
Modern speech recognition systems typically cluster triphone
phonetic contexts using decision trees. In this paper we describe
a way to build multiple complementary decision trees from the
same data, for the purpose of system combination. We do this
by jointly building the decision trees using an objective function
that has an added entropy term to encourage diversity among the
decision trees. After the trees are built, the systems are built in
the standard way and the emission probabilities are combined
during decoding. Experiments on multiple datasets show gains
from the use of multiple trees, at the expense of evaluating mul-
tiple models in test time.
Index Terms: Decision Tree, Acoustic Modeling, Speech
Recognition, Ensemble Methods

1. Introduction
While phones are widely used to represent word pronuncia-
tions, the so-called coarticulation effect means that the acoustic
realization of a phone may depend on the phones to the right
and left. Modern speech recognition systems typically use con-
text dependent phones (e.g., triphones) as their modeling units.
This, however, causes the problem of data sparsity, because
most context dependent phones will not appear in the training
data. Triphone contexts are normally clustered into equivalence
classes, in order to reduce the number of distinct triphones we
need to model and to handle unseen triphones.

The conventional technique to achieve these phonetic
equivalence classes is the decision tree, in which the space of
phonetic contexts is iteratively split by asking binary questions
about the identities of the preceding and succeeding phones.
This has the advantage of naturally giving reasonable equiva-
lence classes for triphones that were never seen in the training
data. While it is generally NP-hard to build an “optimal” de-
cision tree [1], algorithms that efficiently build sub-optimal de-
cision trees have been proved to be very successful in speech
recognition. In [2], a greedy algorithm is proposed for building
phonetic decision trees, where it greedily finds the “best split”
on the current tree and splits the tree until a certain stopping
criterion is reached. The objective function that we greedily op-
timized is normally based on modeling the feature data with a
diagonal-covariance Gaussian model whose parameters are spe-
cific to each tree leaf.

Most speech recognition systems incorporate only a single
decision tree to cluster context dependent phones, but a num-
ber of previous authors have looked into the possible benefits of
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building multiple trees, mostly for purposes of system combi-
nation. In [3] and [4], randomness is added to the tree building
process to generate different but complementary phonetic deci-
sion trees. A separate acoustic model is trained for each tree;
the system combination is based on (respectively) averaging the
acoustic likelihoods; and ROVER [5]. In [6], a method called
factorized decision trees is introduced, where different subsets
of the data are used to build multiple phonetic decision trees.
But unlike the work in [3] and [4], where acoustic models are
trained on the whole training data with each decision tree, [6]
trains acoustic models in a Cluster Adaptive Training frame-
work [7]. In [8], multiple decision trees as well as multiple
acoustic models are created by re-weighting the training data
(as in boosting), and decoding is done using weighted-averaged
log-likelihood scores.

Our work in this paper is similar to that in [3] and [4], where
multiple decision trees are generated without splitting or mod-
ifying the training data. But instead of adding randomness to
the tree building process, we propose a deterministic way of
building multiple phonetic decision trees. We do this by intro-
ducing an entropy term to the tree building objective function,
which encourages diversity among the trees. After the trees are
built, the acoustic models are trained in the standard way and
the combination is done by combining the emission probabil-
ities from different models during decoding. Experiments on
multiple datasets show consistent gains from the use of multi-
ple trees.

The rest of the paper is structured as follows. In Section
2 we describe our objective function for building a collection
of diverse decision trees (our “non-random forest”). In Sec-
tion 3, we explain how we incorporate multiple decision trees
into our speech recognition system. Details of our experimental
setup are given in Section 4, and results are shown in Section
5. Finally in Section 6 we reiterate our main claims and discuss
potential future work.

2. Multi-tree Algorithm
In this section, we first define entropy for single and multiple
decision trees. We then introduce an entropy term to the stan-
dard phonetic decision tree building objective function, which
encourages diversity when building multiple trees jointly from
the same data. Finally we illustrate how we build multiple trees
jointly.

2.1. Entropy of A Single Decision Tree

For each tree, we define a discrete probability distribution based
on the data counts at each leaf. Let d be a decision tree with k
leaves 1, 2, . . . , k, and C(i) the count of training-data frames



Figure 1: Distribution of a single decision tree

that are clustered to leaf i, we define the distribution as:

Pd(i) =
C(i)

N
, for 1 ≤ i ≤ k (1)

where N is the number of frames in the dataset. Figure 1 il-
lustrates a decision tree with three leaves and its corresponding
probability distribution. The entropy of a decision tree can then
be written as

H(d) = −
k∑

i=1

Pd(i)log(Pd(i)) (2)

Generally, the entropy of a decision tree defined above will
have a larger value if the decision tree distributes the data to its
leaves more evenly.

2.2. Joint Entropy of Multiple Decision Trees

The probability distribution and entropy defined above for the
single decision tree case can easily be extended to the case
of multiple decision trees, by using fraction of data at “joint”
leaves. Suppose D = {d1, d2, ..., dn} is a set of decision trees,
the joint probability distribution can be defined as follows

PD(i1, . . . , in) =
C(i1, . . . , in)

N
(3)

where C(i1, . . . , in) is the number of data frames that appears
in leaves ij in j-th tree for all j = 1, . . . , n. Figure 2 gives an
example of the joint distribution of two trees, each with three
leaves. Note that not all combinations of leaves of different
trees have non-zero probabilities. Following the definition of
the joint distribution, we can write the joint entropy of multiple
decision trees as follows

H(D) = −
∑

PD(i1, . . . , in)log(PD(i1, . . . , in)) (4)

where the summation is over all the possible combinations of
(i1, . . . , in)’s. In all of the above entropy definitions, we follow
the convention that 0 log 0 = 0.

2.3. Multi-tree Objective Function

In speech recognition, greedy algorithms are usually used to
build phonetic decision trees. In such algorithms, one tree split
is performed each time, optimizing some pre-defined objec-
tive functions, and the splitting goes on until certain criteria is
reached. A commonly used objective function is the training
data likelihood. For example, in [2], the Gaussian likelihood is
used as the objective function for building trees, assuming data
is generated by Gaussian distributions whose parameters only
depends on the leaf it is assigned to. Note that maximizing the
total likelihood is equivalent to maximizing the average likeli-
hood per data frame, and in this paper we define the objective
functions as likelihood per data frame.

Figure 2: Joint distribution of multiple decision trees

Let L(d) be the averaged Gaussian likelihood of data on
phonetic decision tree d, the objective function to maximize
during the decision tree building as described in [2] is equiv-
alent to

F(d) = L(d) (5)

Now suppose we want to build a list of decision trees D =
{d1, . . . , dn} jointly. Let L(D) be the data likelihood from all
the decision trees, i.e.

L(D) =

n∑
i=1

L(di). (6)

We use the following objective function for building multiple
trees:

F(D) = L(D) + λ

(
H(D)−

∑n
i=1H(di)

n

)
(7)

where H(D) is the joint entropy of multiple decision trees D,
and H(di) is the entropy of the individual decision tree di.

This new objective function is equivalent to (5) when build-
ing a single decision tree since the joint entropy equals to the
single tree entropy when there is only one tree. If there are mul-
tiple trees, the added term will encourage diversity among the
trees– the larger λ is, the stronger this effect will be.

It is worth mentioning that adding the H(D) term alone is
sufficient to encourage diversity among the trees. But a side
effect of adding that term only is that the system tends to make
the individual trees’ entropies large as well, by splitting leaves
with large counts of data. By adding the negated term in (7), we
counteract this effect.

2.4. Multi-tree Algorithm

Our tree building process is very similar to the standard algo-
rithm described in [2], except that we build multiple trees jointly
instead of one, and we also use the objective function in Equa-
tion (7) instead of that in Equation (5).

We will not be describing the exact data structures we used
to do the multi-tree splitting. The key thing is that our data
structures need to make it possible to to efficiently compute the
change in the entropy term from splitting one of the trees.

We start the tree building process by initializing mono-
phone trees for the specified number of decision trees. Then,
each time, we split one of the decision trees with the split that
maximizes the change in Equation (7). We repeat this process
until all decision trees obtain the required number of leaves. Af-
ter the splitting is done for all the trees, we also do the merging



described in [2], which merges leaves within a tree if the de-
crease of the objective function caused by the merge is less than
the smallest gain during the splitting step. Therefore, the final
decision trees will have fewer leaves than the number initially
obtained in the splitting phase.

3. Application of Multi-tree Method to
Speech Recognition

This section describe how we incorporate the decision trees
built in Section 2 into our speech recognition systems.

3.1. Acoustic Model Training

Acoustic models are trained in the standard way, the same as
those in the single tree case. But we build one model with each
decision tree in the multi-tree case.

3.2. Decoding

There are different ways to combine individual acoustic mod-
els trained with each each decision tree. For example, we can
decode with each acoustic model independently, and do system
combination on the decoding output. In this work, we com-
bine at the state level, by computing the combined data likeli-
hoods p(o|s). (Note that in the DNN case we deal with pseudo-
likelihoods and not real likelihoods).

We follow the work in [9] on tree arrays, and build a “vir-
tual tree”, such that every leaf in the virtual tree corresponds to
a unique combinations of leaves in individual trees. Let s be
a leaf (which also corresponds to a state in the hidden Markov
model) in the virtual tree, and let s1j1 , s2j2 , . . . , snjn be its cor-
responding leaves from the individual trees, where siji is the
jthi leaf of the ith tree. An obvious way to do combination is to
take the geometric mean of the likelihoods (equivalently, the al-
gebraic mean of the log-likelihoods). In [3], the algebraic mean
of the likelihoods was used.

In this work, we use a method which we found experimen-
tally to work better than either of the above-mentioned methods:

log(p(o|s)) =
∑n

i=1 log(p(o|siji)) exp(C log(p(o|siji)))∑n
i=1 exp(C log(p(o|siji)))

.

(8)
where for experiments reported here, we set C = 0.1.

As for transition probabilities, we simply take the algebraic
means of the transition probabilities given by each model.

4. Experimental Details
We use the open-source speech recognition toolkit Kaldi [10]
for our implementation and experiments.

4.1. System Description

We start off by training a speaker-independent Gaussian mix-
ture model (GMM) system, which will later be used for both
the baseline system and our proposed system. For this GMM
system, we extract 13 dimensional Mel-frequency cepstral co-
efficient (MFCC) [11] features, and perform a typical maximum
likelihood acoustic training recipe that begins with a flat-start
initialization of context-independent phonetic HMMs, and ends
with learning the maximum likelihood linear transform (MLLT)
[12] for features.

For the baseline system, we move forward by re-building
the decision tree with statistics collected from the speaker-
independent GMM system, and performing speaker adaptive

training (SAT). This is further followed by a deep neural net-
work (DNN) training with p-norm nonlinearity [13]. Both the
GMM and DNN baseline systems are tuned so that increasing
the number of parameters would result in degradation of perfor-
mances.

For our proposed system, we use the same statistics col-
lected from the speaker-independent GMM system, but we
build multiple decision trees with the algorithm described in
Section 2. For each decision tree, we build a SAT model, which
is then followed by the p-norm DNN training. Therefore, in our
proposed system, we have multiple acoustic models in both the
SAT and DNN stage. However, we are careful not to perform
further re-alignment of the data after building multiple trees.
We need the alignments to remain compatible for the joint de-
coding to make sense (i.e. if the different systems learned to
align data in incompatible ways, it would be a problem).

4.2. Datasets

We conduct experiments on four datasets, namely Wall Street
Journal (WSJ) [14], Switchboard (SWBD), TED-LIUM [15]
and Librispeech [16].

For Wall Street Journal, acoustic models are trained on
the SI-286 portion of the training data, and a trigram language
model is used for decoding; performance is then evaluated on
the eval92 and dev93 datasets. For Switchboard, acoustic mod-
els are trained on the whole training set, and 4gram language
model trained from Fisher data is used for decoding; we eval-
uate performance on the full eval2000 dataset as well as its
SWBD subset. For Librispeech, acoustic models are trained on
the 100 hours subset, and a 4gram language model is used for
decoding; we evaluate on both “dev” and “test” datasets under
clean and noisy (“other”) conditions. For TED-LIUM, acous-
tic models are trained on the whole training data, and trigram
language model is used for decoding; the performance is then
evaluated on both “dev” and “test” datasets.

5. Results
5.1. Impact of the Entropy Term

# trees λ avg-entropy joint-entropy
1 - 7.63 7.63
2 0.1 7.67 7.85
2 0.25 7.72 8.11
2 0.5 7.76 8.41
2 1 7.78 8.78
3 1 7.74 9.00
4 1 7.72 9.07

Table 1: Entropy of multi-trees (TED-LIUM)

Table 1 shows the average entropy of the trees, together
with the joint entropy, for multiple decision trees built from the
same TED-LIUM data, with varying values of λ. The stopping
criterion for the splitting is when each tree reaches 5000 leaves,
but the actual number of leaves per tree is less than 5000 after
the merge operation described in Section 2.

From Table 1 we can see that if we increase the weight of
the entropy term (λ), the average entropy of multiple trees only
changes slightly, but the joint entropy of all the trees increases
significantly. This is because the entropy term is moving the
decision trees away from each other, and increasing the entropy



# trees λ avg # leaves # virtual-leaves
1 - 3973 3973
2 0.1 4030 8173
2 0.25 4115 12969
2 0.5 4204 21138
2 1 4237.5 36828
3 1 4123 97999
4 1 4078.5 164811

Table 2: Number of leaves in multi-trees (TED-LIUM)

term weight λ makes the trees more different. Table 2 displays
the average number of leaves in the individual trees, together
with the number of virtual leaves, showing the same trend that
larger λ increases diversity among the trees.

5.2. Impact of λ on WER

Knowing that increasing λ will lead to more diversity in the
decision trees, we run another set of experiments to evaluate the
impact of λ on WER. Table 3 shows WER performance of the
multi-tree systems with different values of λ on the SAT model
of TED-LIUM corpus. We can see that by introducing diversity
among the trees, it helps improve the recognition performances;
however if λ gets too large, performance of the combination
system starts to degrade, because with large λ the individual
models get worse, as we will see in Section 5.3. For the rest
of our experiments, we will use λ = 1 since it gives the most
improvement on TED-LIUM corpus, as shown in Table 3.

# trees λ dev test
1 - 25.8 23.5

2

0.1 25.4 23.2
0.5 25.2 22.9
1 25.1 22.7

1.5 25.0 23.0
2 25.2 22.9

Table 3: WER of SAT models on TED-LIUM

5.3. Comparison of Different Combination Methods

Table 4 compares the following results, all based on DNN mod-
els:

baseline The baseline system
tree 1 Two-tree system: first tree by itself
tree 2 Two-tree system: second tree by itself
MBR Two-tree system: multi-lattice Minimum Bayes Risk

decoding as in [17]
joint Two-tree system: proposed joint decoding method

The individual trees by themselves perform worse than the
baseline, as expected. The combination based on MBR decod-
ing is a little better than the individual models, but still worse
than the baseline. However our joint-decoding system substan-
tially outperforms both the individual trees and the baseline.

dev test
# trees clean other clean other

baseline 5.93 20.42 6.59 22.47
tree 1 6.20 20.67 6.75 22.68
tree 2 6.27 21.07 6.87 22.84
MBR 6.00 20.87 6.59 22.84
joint 5.82 19.86 6.46 21.62

Table 4: WER of individual and combined DNN models on
Librispeech (λ = 1)

5.4. Performance of Multi-tree DNN models

WSJ SWBD TED-LIUM
# trees eval92 dev93 swbd eval2000 dev test

1 7.07 4.06 13.4 19.2 21.7 19.4
2 6.55 4.08 13.0 18.8 21.2 18.6
3 6.46 3.72 12.8 18.7 21.2 18.5

Table 5: WER of DNN models on WSJ, SWBD and TED-LIUM
(λ = 1)

dev test
# trees clean other clean other

1 5.93 20.42 6.59 22.47
2 5.82 19.86 6.46 21.62
3 5.80 19.77 6.27 21.68

Table 6: WER of DNN models on Librispeech (λ = 1)

Tables 5 and 6 give the multi-tree performance of the DNN
models. As we can see from the tables, 2-tree systems give bet-
ter recognition accuracy compared to the baseline consistently
across most datasets; 3-tree systems usually outperform 2-tree
systems, though the relative gains become smaller. We would
expect further but relatively smaller improvements from using
more trees. A downside of the multi-tree combination systems
is that both training and decoding take longer, which is linear to
the number of trees in the system. Therefore in our experiments
we use at most 3 trees.

6. Conclusions and Future Work
In this paper, we present a method to build multiple phonetic de-
cision trees for speech recognition. An entropy term is added to
the standard objective function during tree building so that trees
built jointly will grow differently. Acoustic models are built
on top of different trees, and during decoding, emission prob-
abilities from individual models are combined to give the final
acoustic scores. Experiments on multiple datasets show that us-
ing multiple trees gives consistent gains for speech recognition.

For future work, we would first study other ways to com-
bine different ASR systems besides combining acoustic scores
at the state level; secondly, we want to compare the performance
of this work with other multi-tree methods, e.g. randomized de-
cision trees; thirdly, for DNN multi-tree systems, we would like
to try letting the different models share parameters for the early
layers, which would enable us to share most of the computation
both when training and decoding.
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