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Abstract
In this paper, we describe the work on accelerating decoding
speed while improving the decoding accuracy. Firstly, we pro-
pose an architecture which we call Projected Gated Recurrent
Unit (PGRU) for automatic speech recognition (ASR) tasks,
and show that the PGRU could outperform the standard GRU
consistently. Secondly, in order to improve the PGRU’s gener-
alization, especially for large-scale ASR task, the Output-gate
PGRU (OPGRU) is proposed. Finally, time delay neural net-
work (TDNN) and normalization skills are found to be benefi-
cial to the proposed projected-based GRU. The finally proposed
unidirectional TDNN-OPGRU acoustic model achieves 3.3%
/ 4.5% relative reduction in word error rate (WER) compared
with bidirectional projected LSTM (BLSTMP) on Eval2000 /
RT03 test sets. Meanwhile, TDNN-OPGRU acoustic model
speeds up the decoding speed by around 2.6 times compared
with BLSTMP.
Index Terms: GRU, LSTM, Lattice-free MMI, Recurrent Neu-
ral Network, Speech Recognition

1. Introduction
Recurrent neural network achieves state-of-the-art results in au-
tomatic speech recognition (ASR) tasks [1] [2] [3] [4] [5]. Un-
like feed-forward neural network, recurrent neural network will
feed activations from both the previous time steps and previous
layers as input to the network to make decision for the current
time step. Therefore, recurrent neural network could model a
dynamic contextual window of all sequence history rather than
a static fixed window over the input sequence which makes re-
current neural network more suitable for sequence modeling.

However, it is difficult to train the vanilla recurrent neural
network due to the vanishing gradient and exploding gradient
problems [6]. To address these problems, many sophisticated
recurrent units are proposed, among those recurrent neural net-
work variants, long short-term memory (LSTM) [7] and gated
recurrent unit (GRU) [3] are two related variants which have
been successfully used in speech recognition field [1] [8]. For
LSTM, input gate, output gate and forget gate are used to con-
trol the information flow. Simpler than LSTM, the GRU uses
only reset gate and update gate. In [4], the authors evaluated
GRU and LSTM on polyphonic music data and raw speech sig-
nal data, but they did not make concrete conclusion on whether
LSTM or GRU was better. For ASR task, in [8], the authors has
applied GRU for ASR, and showed that GRU based acoustic
model outperformed the simple recurrent neural network, but

they did not show the recognition results on LSTM.
In this paper, we focus on GRU based recurrent neural net-

work architectures. The contributions of this paper could be
described as:

• Proposing PGRU for speech recognition tasks, and com-
paring it with standard GRU in bidirectional variant.

• Proposing OPGRU and interleaving (O)PGRU with
TDNN [9] into one unified unidirectional model.

• Normalizing the projected output of (O)PGRU, and
achieving better performance.

The paper is organized as follows: Section 2 presents the
prior work, Section 3 presents the proposed models, Section 4
shows the experimental setup, Section 5 presents the results,
and conclusion is presented in Section 6.

2. Prior work
In this paper, we propose projected-based GRU architectures for
ASR tasks, and compare the PGRU with the standard GRU and
Projected LSTM (LSTMP) [1]. Before the evaluation of PGRU,
we first describe the LSTMP and GRU in this section.

2.1. Projected LSTM

The LSTM unit was initially proposed by Hochreiter and
Schmidhuber [7]. For vanilla recurrent neural network, it is
difficult to learn long time dependency due to the vanishing or
exploding gradient. But LSTM can learn long time dependency
by enforcing constant error flow through ’constant error car-
rousels’ (CEC) [7]. Since then, a number of modifications to
the original LSTM have been made.

We follow the implementation of LSTM in the ’projected’
variant proposed by Sak [1]. Each LSTMP unit contains an in-
put gate which controls the flow of input activations into the
memory cell and an output gate which controls the output flow
of LSTMP unit. Also the forget gate is adopted to allow the
LSTMP unit to adaptively forgetting or resetting the memory
cell [10]. Unlike LSTM, every LSTMP unit contains one re-
current projection layer and one non-recurrent projection layer.
Note that we use one equivalent single projection layer to take
place of two separate projection layers.

2.2. GRU

GRU was firstly proposed by Cho et al. [3] to make the recurrent
unit capture the long time dependency. Similar to the LSTM



unit, the GRU also has gating mechanism to modulate the flow
of information through the unit.

In our experiments, we implement the standard GRU which
is similar to [4] and formulation is:

rt = σ(Wrxxt +Wrhht−1 + br) (1)
zt = σ(Wzxxt +Wzhht−1 + bz) (2)

h̃t = tanh(Wh̃xxt +Wh̃h(rt � ht−1) + bh̃) (3)

ht = (1− zt)� h̃t + zt � ht−1 (4)
yt = ht (5)

where the memory cell activation ht at time t is a linear in-
terpolation of the previous activation ht−1 and the activation
candidate h̃t at time t, rt is the reset gate and zt is the update
gate. yt is the output of GRU. � is element-wise multiplication
and σ stands for Sigmoid non-linear activation. The W terms
denote weight matrices (e.g. Wrx is the weight matrix from the
reset gate to the input).

For the standard GRU [4], the activation candidate is com-
puted similarly to the traditional recurrent neural network, zt
decides how much the GRU update its memory cell activation
and rt is used to forget the previously computed state. Different
from LSTM, GRU does not have a separate memory cell, and
its memory cell is exposed to the next step calculation directly.

3. Proposed model
3.1. Projected GRU

Different from the standard GRU architecture, the PGRU has
one projection layer, formulation is:

rt = σ(Wrxxt +Wrsst−1 + br) (6)
zt = σ(Wzxxt +Wzsst−1 + bz) (7)

h̃t = tanh(Wh̃xxt +Wh̃s(rt � st−1) + bh̃) (8)

ht = (1− zt)� h̃t + zt � ht−1 (9)
yt = Wyhht (10)
st = yt[0 : r − 1] (11)

where Wyh is the projection matrix, which projects the ht into
yt with a lower dimension. st is the projected recurrence. And r
is the projected recurrence dimension. yt is the output of PGRU.
The dimension of rt is the same as the projected recurrence
dimension, and the dimension of zt is the same as memory cell
dimension.

Under our setup, the projected memory cell contains recur-
rent and non-recurrent part, the recurrent part will be used as the
recurrence of PGRU, and all the projected memory cell will be
fed into next layer as the output of PGRU. The st mismatches
the dimension of ht, so we still use ht−1 for the calculation of
ht. With the projection layer, we can preserve a memory cell
with higher dimension while keeping the model size small. The
existence of non-recurrent part in projected memory cell can
keep a higher output dimension without increasing the model
size obviously.

3.2. Output-gate Projected GRU

The reset gate rt allows the model to delete past memory by
forgetting the previously computed states. From Fig.1 we can
see, the PGRU’s reset gates (Sigmoid function) tend to get sat-
urated. This means reset gates from different layers remain or

Figure 1: Average activation values of different reset gates of
one 3-layer Bidrectional PGRU on Fisher + Switchboard task.

delete most of the previously computed states. We believe that
computational redundancy exists in the PGRU reset gate. Also
the saturated reset gate will hamper the back propagation dur-
ing model training. But different from [11], we remove the re-
set gate and replace it with an output gate. The existence of
projection layer breaks the inherent value bound of the GRU,
the output gate can help regulate how much the cell informa-
tion is exposed to the projected output. Another modification
of PGRU is using ht−1 to replace st−1 in Eq.(8). Our experi-
ments show that the proposed OPGRU outperforms PGRU on
large-scale speech recognition task. The equations of proposed
Output-gate Projected GRU (OPGRU) are as follow:

ot = σ(Woxxt +Wosst−1 + bo) (12)
zt = σ(Wzxxt +Wzsst−1 + bz) (13)

h̃t = tanh(Wh̃xxt + Uh̃h � ht−1 + bh̃) (14)

ht = (1− zt)� h̃t + zt � ht−1 (15)
ỹt = ot � ht (16)
yt = Wyỹ ỹt (17)
st = yt[0 : r − 1] (18)

where Uh̃h is learnable vector, we use vector instead of matrix
to reduce the model parameter. The dimension of ot and zt is
the same as memory cell dimension.

4. Experimental setup
All our experiments were conducted under the Kaldi speech
recognition toolkit [12]. We focus on 2000 Hr Fisher + Switch-
board large vocabulary continuous speech recognition (LVCSR)
task, also report some results on 80 Hr AMI single distant mi-
crophone (SDM) [13] [14], 200 Hr Ted-lium [15] and 300 Hr
Switchboard (SWBD) LVCSR tasks. The training criterion is
phone-level sequence training, using the lattice-free MMI ob-
jective [16] on outputs of frame rate 33 Hz. 40-dimensional
Mel-frequency cepstral coefficients (MFCCs) without cepstral
truncation are used as the input into the neural network [17].

The experimental setups for AMI SDM, Ted-lium and
Switchboard are the same as the ones described in [18], the
AMI SDM LVCSR system is trained with numerator lattices
generated from the parallel AMI individual headset microphone
(IHM) data [19]. Fisher + Switchboard LVCSR system is the
same as the one in [16]. We use speed-perturbation technique
[20] for 3-fold data augmentation; and iVector to perform in-
stantaneous adaption of the neural network [21]. The i-Vector
is used to provide information about the mean offset of the



Table 1: WER for BGRU and BPGRU.

Model
AMI SDM 300 Hr SWBD

Parameter Cell Layer WER(%) Parameter Cell Layer WER(%) on Eval2000
Size Dimension 1 Number Dev Eval Size Dimension Number SWBD Callhome Total

BGRU 11.3M 360 3 40.8 44.1 14.9M 360 3 10.3 20.0 15.2
BPGRU 12.5M 1024-128-128 3 37.8 41.1 15.3M 1024-128-128 3 9.5 18.6 14.2
BGRU 24.9M 600 3 41.6 44.5 30.8M 600 3 10.3 19.9 15.1

BPGRU 24.8M 1024-256-256 3 37.8 41.1 30.0M 1024-256-256 3 9.4 18.4 14.0

Model
Ted-Lium 2000 Hr Fisher+SWBD

Parameter Cell Layer WER(%) Parameter Cell Layer WER(%) on Eval2000
Size Dimension Number Dev Eval Size Dimension Number SWBD Callhome Total

BGRU 14.4M 360 3 9.3 9.3 11.9M 360 2 11.0 19.7 15.5
BPGRU 14.9M 1024-128-128 3 7.9 8.4 12.0M 1024-128-128 2 10.6 19.0 14.8
BGRU 30.1M 600 3 9.0 9.2 31.0M 600 3 10.2 17.8 14.2

BPGRU 29.4M 1024-256-256 3 8.1 8.4 30.1M 1024-256-256 3 9.9 17.6 13.9
1. For Cell Dimension 1024-256-256: cell size - 1024, recurrent and non-recurrent dimension - 256.

Table 2: Configurations of various models.

Model Architecture 1 Latency 2

BLSTMP [Lf ,Lb],[Lf ,Lb],[Lf ,Lb] 2020
BPGRU [Pf ,Pb],[Pf ,Pb],[Pf ,Pb] 2020

TDNN-LSTMP T 100 T 100 T 100 Lf T T Lf T T Lf 200
TDNN-PGRU T 100 T 100 T 100 Pf T T Pf T T Pf 200

TDNN-OPGRU T 100 T 100 T 100 Of T T Of T T Of 200
1. Forward LSTMP - Lf , backward LSTMP - Lb, forward PGRU - Pf , back-

ward PGRU - Pb, TDNN - T , forward OPGRU - Of , default layer frame-rate
- 33 Hz and other frame rates are specified in the super-script.

2. See [22] for the definition of latency. We use the same training and decoding
configuration for BLSTMP as that in [22]. Also TDNN-PGRU and TDNN-
OPGRU have the same configuration as TDNN-LSTM-C in [22], just with
LSTMP layers replaced, so they have the same latency.

speaker’s data, so cepstral normalization is not necessary.

4.1. Neural network configuration

The baseline BLSTMP and TDNN-LSTMP neural networks are
the same as the models described in [18] [22]. Regarding the
projection layers in LSTMP, PGRU and OPGRU in this pa-
per, the dimensions of projected recurrence and projected non-
recurrence are always one quarter the cell dimension. For in-
stance, if the memory cell dimension is 1024, the recurrence
projection would be of dimension 256 and the output dimen-
sion would be 512. The model details are shown in Table 2.
The default cell dimension is 1024 unless specified.

Additional temporal context was found to be beneficial for
TDNN-LSTMP used in AMI tasks. So additional TDNN layers
between successive recurrent layers were used to provide addi-
tional context for TDNN-{LSTMP, PGRU, OPGRU} in AMI
SDM task. This leads to larger model parameter size and ad-
ditional latency for TDNN-{LSTMP, PGRU, OPGRU} in AMI
SDM task.

5. Results
5.1. BPGRU vs BGRU

We began by comparing the standard GRU based recurrent neu-
ral network architectures with the proposed PGRU based re-
current neural network architectures, specially in the bidirec-
tional variant. For fair comparison, we tuned the parameter size
of both bidirectional PGRU (BPGRU) and bidirectional GRU
(BGRU) to keep them with the same model size. On the AMI
SDM LVCSR task, BPGRU achieves an average relative word
error rate (WER) reduction of 7.7% over the BGRU, and the
figure is 11.0% on Ted-lium, 7.0% on Switchboard, 3.4% on
Fisher + Switchboard. For the Eval2000 test set, we care more

Table 3: Interleaving PGRU and OPGRU with TDNN.

Model on AMI SDM Parameter WER(%)
Size Dev Eval

TDNN-PGRU 36.5M 35.9 39.0
TDNN-OPGRU 38.7M 36.3 39.6

Model on Ted-lium Parameter WER(%)
Size Dev Test

TDNN-PGRU 30.2M 8.0 7.7
TDNN-OPGRU 32.4M 7.9 8.0

Model on SWBD Parameter WER(%) on Eval2000
Size SWBD Total

TDNN-PGRU 32.7M 9.0 13.3
TDNN-OPGRU 34.9M 9.1 13.3

Model on Fisher+SWBD Parameter WER(%) on Eval2000
Size SWBD Total

TDNN-PGRU 32.8M 9.1 12.9
TDNN-OPGRU 34.9M 8.6 12.0

Table 4: WER after applying normalization.

Model on 2000 Hr Fisher+SWBD Eval2000 RT03
SWBD Total Fsh Total

TDNN-PGRU 9.1 12.9 9.9 12.4
TDNN-NormPGRU 8.5 12.0 9.1 11.3

TDNN-OPGRU 8.6 12.0 9.3 11.7
TDNN-NormOPGRU 8.1 11.8 8.9 11.0

TDNN-LSTMP 8.2 12.0 9.4 11.4
TDNN-NormLSTMP 8.1 12.3 9.6 11.6

about the WER on the total test set, but for convenience, we also
show the Switchboard (SWBD) and Callhome subset results in
the table. The BPGRU gains consistent improvement compared
with BGRU on all tested LVCSR tasks. As for the reason why
PGRU outperforms standard GRU, we believe that, the PGRU
could preserve a larger memory cell dimension compared with
the standard GRU with the same model size.

5.2. TDNN-PGRU vs TDNN-OPGRU

In this section, we firstly explored the effect of interleaving
PGRU with TDNN. From Table 1 and Table 3 we can see, com-
pared with 3-layer 1024-256-256 BPGRU in Table 1, TDNN-
PGRU gains a 5.1% relative reduction in WER on AMI SDM
LVCSR task and the figure is 3.6% on Ted-lium LVCSR task,
5.0% on Switchboard LVCSR task, 7.2% on Fisher + Switch-
board LVCSR task. Overall, the improvement indicates that in-
terleaving TDNN is beneficial for the proposed Projected-based
GRU.

Secondly, we proposed TDNN-OPGRU by replacing
PGRU with OPGRU. From Table 3 we can see, for the three
relative small-scale ASR tasks, TDNN-OPGRU performs the
same as or slightly worse than the TDNN-PGRU, but for the
2000 Hr Fisher+Switchboard ASR task, TDNN-OPGRU gains



Table 5: WER comparison between LSTMP and OPGRU.

Model on 2000 Hr Fisher+SWBD Model Eval2000 RT03
Size SWBD Callhome Total Fsh SWBD Total

Xiong et al. [23] BLSTM, spatial smoothing 8.6 15.4 - - - -
Xiong et al. [23] BLSTM, spatial smoothing, 27k senones 8.3 15.3 - - - -

BLSTMP 41.3M 8.5 15.3 12.0 9.7 13.3 11.6
BLSTMP+dropout 8.4 15.4 12.0 9.2 13.0 11.2

TDNN-LSTMP
39.7M

8.2 15.4 12.0 9.4 13.3 11.4
BatchnormTDNN-LSTMP 8.3 16.4 12.4 9.8 13.9 11.9

BatchnormTDNN-LSTMP+dropout 8.2 15.5 12.0 9.2 13.0 11.2
TDNN-NormOPGRU

34.9M
8.1 15.3 11.8 8.9 12.9 11.0

BatchnormTDNN-NormOPGRU 8.2 15.5 11.9 8.4 12.6 10.6
BatchnormTDNN-NormOPGRU+dropout1 8.3 14.7 11.6 8.5 12.6 10.7

1. Dropout is applied to the OPGRU’s output gate and update gate, similar to dropout Location 4 in paper [18].

obvious improvement on total Eval2000 test set. From Table
3, we could get the conclusion that OPGRU generalizes better
than PGRU across different data sets.

5.3. Normalization in OPGRU and PGRU

There have been prior works on applying batch normalization
on recurrent neural networks [11] [24]. The author in [11], used
Rectified Linear Unit (ReLU) for the GRU, so in order to re-
duce the activation value of ReLU, they use batch normaliza-
tion. To stabilize the output of projected-based GRU, after the
projection layer, we apply batch normalization in the forward
direction. For the projected recurrence (st in Eq.11 and Eq.18),
we normalize them in the way same as Hinton’s layer normal-
ization [25], except we do no mean subtraction, only variance
normalization. We call PGRU and OPGRU with normalization
NormPGRU and NormOPGRU.

From Table 4 we can see, the TDNN-NormPGRU gains
7.0% / 8.9% relative reduction in WER compared with TDNN-
PGRU on total Eval2000 / RT03 test sets. The relative reduc-
tion in WER for TDNN-NormOPGRU over TDNN-OPGRU is
1.7% / 6.0% on total Eval2000 / total RT03 test sets. However
the proposed normalization method does not benefit the TDNN-
LSTMP in decoding accuracy.

5.4. Comparing NormOPGRU with LSTMP

In previous section, the proposed normalization is proved to be
trivial to the LSTMP unit, so in the rest of the paper, normal
LSTMP is adopted. For comparison, we show BLSTM results
from Xiong et al. [23]. It should be noted that we can get
better accuracy with feature-fusion [26]. For decoding setup,
we only use fisher and switchboard training transcripts to build
the 4-gram language model. In general, our BLSTMP baseline
is comparable to those of [23]. From Table 5 we can see, ap-
plying both batch normalization in TDNN layers and per-frame
dropout [18] in the LSTMP/NormOPGRU can slightly improve
the decoding results. From the acoustic models in Table 5 we
can see, compared with the BLSTMP or TDNN-LSTMP, the
proposed TDNN-NormOPGRU can achieve 3.3% / 4.5% rela-
tive reduction in WER on Eval2000 / RT03 test sets.

Decoding speed, commonly measured by real time factor
(RTF), is important for online acoustic model deploy. Fixed
chunk and additional chunk context are used for our recur-
rent neural network during training and decoding. For decod-
ing setup in Table 6, the acoustic models are decoded with
chunk-width 1500ms1 with 500ms additional chunk context2.
For the unidirectional recurrent neural networks, we adopted
state-saving decoding strategy [22], which copy the state across
chunks to reduce latency. From Table 6 we can see, state-saving
TDNN-NormOPGRU can speed up decoding by 2.6 times

Table 6: Real time factor for various models.

Model on Fisher+SWBD1 Eval2000 RT03 RTFSWBD Total Fsh Total
BLSTMP+dropout 8.4 12.0 9.2 11.2 1.78

TDNN-LSTMP+dropout 8.2 12.0 9.2 11.2 1.19
+state saving decode [22] 8.1 12.1 9.4 11.4 0.99

TDNN-NormOPGRU+dropout 8.3 11.6 8.5 10.7 0.96
+state saving decode [22] 8.2 11.6 8.6 10.7 0.68

1. All the TDNN layers are equipped with batch normalization, TDNN-LSTMP
is the same model as BatchnormTDNN-LSTMP in Table 5.

compared with BLSTMP. The state-saving decoding LSTM
acoustic models always degrade the performance slightly com-
pared with their non-state-saving counterparts [22]. So under
the state-saving decoding setup, the finally proposed TDNN-
NormOPGRU is 4.1% / 6.1% relative better than TDNN-
LSTMP in WER, and speeds up the decoding by 1.5 times.

6. Conclusions
This paper proposed the OPGRU as an alternative for LSTMP.
Compared with LSTMP , the simple OPGRU has only two
gates and smaller model size. Also, in order to further improve
the performance of projected-based GRUs, we combined them
with TDNNs and applied batch normalization as well as a vari-
ant of layer normalization to them. With all theses techniques
adopted, our finally proposed TDNN-NormOPGRU acoustic
model enjoyed faster decoding speed and higher decoding ac-
curacy compared with our old LSTMP system.
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