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ABSTRACT

Teacher-student (T-S) learning is a transfer learning approach,
where a teacher network is used to “teach” a student network
to make the same predictions as the teacher. Originally for-
mulated for model compression, this approach has also been
used for domain adaptation, and is particularly effective when
parallel data is available in source and target domains. The
standard approach uses a frame-level objective of minimiz-
ing the KL divergence between the frame-level posteriors of
the teacher and student networks. However, for sequence-
trained models for speech recognition, it is more appropri-
ate to train the student to mimic the sequence-level poste-
rior of the teacher network. In this work, we compare this
sequence-level KL divergence objective with another semi-
supervised sequence-training method, namely the lattice-free
MMI, for unsupervised domain adaptation. We investigate
the approaches in multiple scenarios including adapting from
clean to noisy speech, bandwidth mismatch and channel mis-
match.

Index Terms— sequence training, lattice-free, transfer
learning, unsupervised adaptation, automatic speech recog-
nition

1. INTRODUCTION

Transfer learning is the general machine learning approach of
transferring knowledge from one model to another. Depend-
ing on the context it is used in, it might be called different
things. In the case where we have to learn a smaller model
on the same domain, the approach is called “model compres-
sion”. In the case, where we have to learn a model in a dif-
ferent domain, the approach is called “domain adaptation”.
There is a rich survey of transfer learning methods in the lit-
erature [1, 2, 3]. Transfer learning methods have been applied
to speech processing in various settings. Wang et. al [4] gives
a good overall survey of methods used in speech processing.
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Sequence discriminative training, e.g. using Maximum
Mutual Information (MMI) [5], has been shown to improve
performance of frame-level cross-entropy trained neural net-
works. Of late, neural networks are trained from scratch using
sequence objectives like Connectionist Temporal Classifica-
tion (CTC) [6] and Lattice-free MMI (LF-MMI) [7], and these
usually out-perform the frame-level trained ones. LF-MMI
training has been investigated for supervised domain adapta-
tion [8] and semi-supervised training [9]. Semi-supervised
training methods like in [9] can also be applied when the un-
supervised data is from a slightly different domain than the
supervised data used to train the seed network. This was
investigated for speaker adaptation in [10] using 1-best hy-
potheses from decoding. In this paper, we investigate this
idea of using semi-supervised LF-MMI with lattice-based su-
pervision for unsupervised domain adaptation.

One of the methods for transfer learning is the teacher-
student (T-S) approach where a teacher network is used to
“teach” a student network to make the same predictions as
the teacher. It is traditionally used for model compression
[11] as in [12, 13]. It has also been applied in context of do-
main adaptation [14], where the teacher network is trained on
the source domain and the student network is trained on the
target domain. It is particularly effective when parallel data
is available in source and target domains [15]. Here, a large
amount of unsupervised data in parallel source and target do-
mains is used to improve performance of the model on target
domain. However, these works do not compare with stan-
dard semi-supervised training methods that can also be used
to do unsupervised adaptation. One of the goals of this work
is to compare T-S learning objective with a standard semi-
supervised training approch like using LF-MMI.

The standard approach for T-S learning uses an objec-
tive of minimizing the KL divergence between the frame-level
posteriors of the teacher and student networks. However, this
may not be applicable to state-of-the-art speech recognition
models that are trained at the sequence-level, and in particular
using LF-MMI. Alternatively, in this work, we use the KL di-
vergence between sequence-level posteriors [16, 10] from the



teacher and student networks as the training objective. The
similarity of this objective to LF-MMI allows it to be inte-
grated easily into the lattice-free training framework.

In this paper, we investigate two sequence objectives for
teacher-student type transfer learning for unsupervised adap-
tation – semi-supervised LF-MMI and sequence-level KL di-
vergence. We describe our methods in Section 3. In Section 4,
we describe experiments to evaluate our proposed method in
the scenario of domain adaptation. We look at three scenario
for adaptation – clean to noisy speech, 8kHz to 16kHz audio,
and headset microphone to distant microphone. Finally, in
Section 5, we present conclusions and future work.

2. RELATED WORKS

A sequence-KL objective for T-S learning was introduced in
[16] for model compression from an ensemble. Unlike that
work which used lattice-based discriminative training, here
we apply sequence-level KL divergence in the lattice-free
training framework for unsupervised domain adaptation. In
[10], a lattice-free sequence-KL objective was introduced for
model compression and speaker adaptation. Our work in this
paper differs in how the supervision for training the student
is generated. In particular, we propose a simpler way to get
the supervision using the lattice supervision approach used
for semi-supervised LF-MMI training in [9]. We also investi-
gate the effect of using different LMs both when creating the
numerator supervision and the denominator graph.

KL divergence objective is also viewed as a regularizer,
which prevents the model from diverging too much from what
the original model predicts [14]. A sequence-level KL ver-
sion of this idea was used to regularize LF-MMI based DNN
adaptation in [17, 10] to small adaptation sets. On the other
hand, our work in this paper focuses on unsupervised domain
adaptation when we have large unsupervised target-domain
dataset. We also train our neural networks from scratch since
the input features to the student network might be different
from that of the teacher network (e.g. 16kHz vs 8kHz). In
this context, we can view the sequence-level KL objective to
be regularizing semi-supervised LF-MMI training to prevent
to the model from over-fitting to the unsupervised data.

3. PROPOSED METHODS

3.1. Semi-supervised Lattice-free MMI

Semi-supervised LF-MMI training was proposed in [9]. Here,
we extend that work to the scenario of domain adaptation
when there is parallel unsupervised data in source and tar-
get domains. In [9], a seed network trained on the super-
vised data is used to decode the unsupervised data to generate
lattices containing the hypothesized phone sequences. The
lattices are converted into numerator graphs (denoted GNUM)

using the smart-splitting method described in [9] and compos-
ing with a normalization FST [7] whereby we interpolate the
word LM scores from the lattice and phone LM scores from
the denominator graph GDEN. The LF-MMI objective is:

FMMI =
∑
r

log
∑

π∈GNUM

P (π | Or) (1)

=
∑
r

log

∑
π∈GNUM

P (Or | π)P (π)
P (Or)

(2)

where Or is the sequence of acoustic observations for ut-
terance r, π is a HMM state sequence in the numerator
graph GNUM or denominator graph GDEN and the likelihood
P (Or) ≈

∑
π∈GDEN

P (Or | π)P (π). We extend this trivially
for domain adaptation. Here, a seed network (referred to
as the teacher model) is trained on the supervised data from
the source domain. This is used to decode the unsupervised
data in the source domain to generate lattices containing the
hypothesized state sequences. These lattices are also the
hypotheses for the corresponding parallel data in the target
domain. So they are converted into supervision for training
the student model in the target domain. The student model
is trained with this as the supervision and the parallel target
domain data as input. Such a use of parallel data for LF-MMI
training was also found to be useful for far-field ASR in [18].

3.2. Sequence-KL objective

Sequence-KL objective was proposed for T-S learning in [16].
The objective here is to make the student network mimic the
teacher network by maximizing the negative KL divergence
between sequence-level posteriors from the teacher and stu-
dent networks as shown in (3). We describe in this section
our implementation in the lattice-free training framework and
how it differs from those in other similar works in [16, 10].

FKL =−
∑
r

∑
π∈GNUM

P (π | Or;λ
∗) log

[
P (π | Or;λ

∗)

P (π | Or;λ)

]
,

(3)

∝
∑
r

( ∑
π∈GNUM

P (π | Or;λ
∗) logP (Or | π;λ)

− logP (Or;λ)

)
, (4)

where P (π | Or;λ
∗) and P (π | Or;λ) are posterior prob-

abilities of the HMM state sequence π obtained from the
teacher network (parameterized by λ∗) and the student net-
work (paramterized by λ) respectively. The former quantity
is a constant since the teacher network is fixed when training
the student. The simplification1 to (4) makes it clear that the
objective consists of numerator and denominator terms.

1using Bayes rule and removing the constant additive terms. Also∑
π∈GNUM

P (π | Or;λ∗) = 1



3.2.1. Denominator term

The denominator term logP (Or;λ) i.e. the log-likelihood
under the student network is independent of the teacher net-
work. In [16], this term was computed using a denominator
lattice generated using a unigram LM. However, in lattice-
free training, we compute this over a fixed denominator graph,
GDEN, just as in the case of LF-MMI. The reader is directed
to [7] for details of this forward-backward [19] computation
on a GPU. As in [7], the denominator graph is created using
a 4-gram phone LM. To bias it to the target domain, we use
interpolated counts from source and target domains as in [20].

3.2.2. Numerator term

We compute the first term in (4) i.e. the numerator term as
a summation over HMM state sequences π = s1 . . . sT in
the numerator graph GNUM created by decoding the utterance
using the teacher network. This is the same numerator graph
that is generated for the semi-supervised LF-MMI training de-
scribed in Section 3.1. This is also where we differ from [10].
In [10], this summation is done over the weak denominator
graph GDEN. However, we are doing this summation over a
lattice-based supervision that is generated using a strong 3-
gram or 4-gram word LM. Our results in Section 4 show that
using a strong LM here is generally better. This is also eas-
ier to implement since the lattice-based supervision is already
generated for semi-supervised LF-MMI training.

3.2.3. Derivative computation

Since teacher network is fixed, the derivative of FKL w.r.t. the
student network output of utterance r at time t, yrt(j;λ), is:

∂FKL

∂yrt(j;λ)
=γNUMrt (j;λ∗)− γDENrt (j;λ), (5)

where γNUMrt (j;λ∗), the numerator posterior, is the posterior
probability of senone j at time t computed over the numerator
graph GNUM using the teacher network and γDENrt (j;λ), the
denominator posterior, is the posterior probability of senone
j at time t computed over the denominator graph GDEN using
the student network. These are computed as:

γNUMrt (j;λ∗) =

∑
π∈GNUM

δrt(j)P (Or | π;λ∗)P (π)∑
π′∈GNUM

P (Or | π′;λ∗)P (π′)
, (6)

γDENrt (j;λ) =

∑
π∈GDEN

δrt(j)P (Or | π;λ)P (π)∑
π′∈GDEN

P (Or | π′;λ)P (π′)
, (7)

where δrt(j) is 1 iff HMM state st in sequence π corresponds
to senone j and 0 otherwise. Both the numerator and denom-
inator posteriors are computed over their respective graphs
using forward-backward algorithm [19].

3.2.4. Lattice-free MMI and sequence-KL

From (5), we can see that the derivative is the difference of the
numerator posterior computed using the teacher network and
the denominator posterior computed using the student net-
work. Note that this differs only in the first term from the
derivative of the MMI objective (2):

∂FMMI

∂yrt(j;λ)
=γNUMrt (j;λ)− γDENrt (j;λ), (8)

where the first term is the numerator posterior computed using
the student network i.e. with λ instead of λ∗ in (6).

To use an interpolation of the two objectives, we can
simply interpolate the numerator posteriors from teacher and
student networks. This is a sequence-level analogue to the
knowledge distillation idea [13], and this was also explored
in [21]. In our work, we always compute the numerator of
the LF-MMI objective using a supervision lattice generated
using a strong 3-gram word LM. But in Section 4, we explore
computing the numerator of the sequence-KL objective using
a different supervision lattice such as one generated using a
weak LM like a unigram LM.

4. EXPERIMENTS

We compare semi-supervised LF-MMI and sequence-level
KL divergence for domain adaptation in the following sce-
nario – Clean to noisy speech, 8kHz Fisher to 16kHz AMI,
and headset microphone to distant microphone speech.

All the neural networks in our experiments have an ar-
chitecture with time-delay neural network (TDNN) [22, 23]
layers interleaved with LSTM [24] layers. We use per-frame
dropout on the LSTM layers [25]. The reader is directed
to [25] for training details. The scripts and code used for
these experiments can be found in a personal Kaldi branch2.
To avoid over-fitting, we apply the regularization methods
suggested in [7] for both LF-MMI and sequence-KL train-
ing. We use online i-vectors [26, 27, 28] for speaker adap-
tation. The teacher and the student networks use i-vectors
extracted from different i-vector extractors trained on their
respective domains. Our method for creating supervision is
described in sections 3.1 and 3.2. In some of the experiments,
we use a semi-supervised style training where the supervised
training uses LF-MMI objective computed on lattices gener-
ated by force-aligning the word transcription using a HMM-
GMM system and the unsupervised training uses LF-MMI or
sequence-KL objective computed on lattices generated by de-
coding as described in Section 3.1.

4.1. Clean to noisy speech

In this section, we report results of unsupervised adaptation
from clean to noisy speech on Aspire corpus [29]. The train-
ing data consists of 1500 hours of Fisher English [30]. Of this,

2https://github.com/vimalmanohar/kaldi/tree/semisup-ts



we use 300 hours as supervised data with transcription and
1200 hours without transcription. The “Baseline” system is
trained with LF-MMI objective on 300 hours supervised data
augmented 3x with reverberation and noise [31] and 3x with
speed and volume perturbation [32] (Hence 9x300 hours).
The “Oracle” system is trained with LF-MMI objective using
as supervised data all 1500 hours augmented 3x with rever-
beration and noise. We use the same i-vector extractor for
baseline, oracle and all the student networks. This is trained
on 1500 hours of Fisher data augmented 3x with reverberation
and noise.

The teacher network is trained on “clean” 300 hours su-
pervised data with only 3x speed perturbation, but with no
reverberation or noise addition. This network is used to de-
code the whole 1500 hours3 of “clean” Fisher data. For this
decoding, we use a 3-gram LM trained on transcripts from
the 300 hours supervised set. We create the supervision for
training the student network as described in Section 3.1 with
1500 hours of reverberated and noise corrupted data (aug-
mented 3x) parallel to the “clean” data. The denominator
graph is generated using 4-gram phone LM created by averag-
ing counts from supervised data alignments and 1-best align-
ments from unsupervised data. We additionally interpolate
the phone LM scores with the word LM scores in the lattice
with a scale of 0.5 as found to be optimum in [9]. The super-
vised training uses LF-MMI with supervision from a GMM
system, while the unsupervised training uses an interpolated
objective (1 − β)FMMI + βFKL. The β used in each exper-
iment is shown in Table 1. The columns “sup” and “unsup”
show the amount of supervised and unsupervised data (prior
to augmentation) respectively used in training the student net-
work. The results in Table 1 show WER(%) on dev and test
sets, which are 3 hour subsets heldout from the Fisher English
corpus, but reverberated and corrupted with noise. These are
part of Kaldi [33] Aspire recipe. We also report results on the
official aspire development set [29].

From rows 2 and 3 showing results from training only
on the unsupervised data, we see that sequence-KL is signifi-
cantly better than using LF-MMI. The WER with LF-MMI is
worse than even the baseline on the aspire set. But with semi-
supervised training by including supervised data in a multi-
task architecture [9] (Rows 4-6), we always get significant im-
provement over the baseline. Further, using either sequence-
KL (Row 5) or an interpolation of LF-MMI and sequence-KL
(Row 6) is slightly better than using LF-MMI (Row 3). We
then tried to use a unigram LM instead of a 3-gram LM for
decoding when generating numerator posteriors for sequence-
KL objective, while still using 3-gram for generating lattices
for MMI training. From the row 7 in Table 1, we see that this
does not work as well. Since, it is easier to do decoding just
once, we recommend just using the 3-gram LM for generated

3Note that this includes the 300 hours of audio from supervised dataset,
but we are only using the audio and not the transcripts. This is like using soft
posteriors for labeled data in conventional T-S learning [13].

Table 1. WER(%) results for unsupervised adaptation from
clean to noisy. The objective is (1− β)FMMI + βFKL.

System β hrs WER(%)
sup unsup dev test aspire

Baseline 0.0 300 0 23.6 22.5 26.6
Unsup 0.0 0 1500 23.0 22.0 27.0
Unsup 1.0 0 1500 21.8 21.0 25.9
Semisup 0.0 300 1500 21.6 21.0 25.1
Semisup 1.0 300 1500 21.0 20.3 24.4
Semisup 0.5 300 1500 21.0 20.2 24.2

+ UG 0.5 300 1500 21.2 20.6 24.5
Oracle 0.0 1500 0 19.1 18.4 23.3

lattices for both MMI and sequence-KL training.

4.2. 8kHz Fisher to 16kHz AMI

In this section, we report results for domain adaptation from
8kHz Fisher to 16kHz AMI [34] individual headset micro-
phone (IHM) speech. There are multiple sources of mis-
match here including bandwidth, channel and language do-
main. However, we only have parallel data to deal with the
bandwidth mismatch (8kHz vs. 16kHz).

The preliminary results are in Table 2. The “Baseline”
network here is same as the one in Section 4.1. This is also
the teacher network for T-S learning and is used to decode
the target AMI-IHM data (downsampled to 8kHz to use with
Fisher’s teacher network) to generate lattices for training stu-
dent network. A 3-gram Fisher LM is used for this decoding.
As in Section 4.1, we again interpolate with a 0.5 weight the
phone LM scores with word LM scores from the lattice when
creating the numerator supervision. While the supervision is
created using the 8kHz AMI-IHM data, we use the parallel
16kHz AMI-IHM data for training the student network. As
input to the student network, we use i-vectors extracted using
an i-vector extractor trained on 16kHz AMI-IHM data.

The rows 2-4 compare using LF-MMI, sequence-KL and
an interpolated objective for training student network on the
unsupervised target data from AMI-IHM. We get 1-2% abso-
lute improvement over the “Baseline” using either of these.
However, all of these systems are quite behind the “Oracle”
system (Row 5), which is trained only on the AMI-IHM in
a supervision fashion using LF-MMI. This is the case even
when training the “Oracle” system on 8kHz data (Row 6),
which only degrades performance by less than 2% over using
16kHz data. This suggests that bandwidth mismatch by itself
is not a major issue in these experiments, but that other forms
of domain mismatch such as language mismatch (dialect, top-
ics etc.) between Fisher and AMI is more prominent.



Table 2. Preliminary WER(%) results for 8kHz Fisher to
16kHz AMI-IHM

System Target domain WER(%)
sup
(hrs)

un-
sup

(hrs)

Rate
(kHz)

dev eval

Baseline 0 0 8 30.6 33.3
MMI 0 80 16 29.8 31.3
KL 0 80 16 29.4 31.5
0.5*(MMI+KL) 0 80 16 29.3 31.2
Oracle 80 0 16 18.7 18.6
Oracle 80 0 8 20.4 19.9

4.2.1. LM for numerator computation

For semi-supervised training, it is generally better to use a
strong LM for decoding unsupervised data to generate lat-
tices. From [9], the best phone LM scale for interpolating
normalization FST’s phone LM scores and lattice’s word LM
scores when generating numerator supervision is 0.5.

In this section, we try to find:

1. the best phone LM scale (0.0 vs 0.5) for interpolating
phone LM and word LM scores to get numerator pos-
teriors for sequence-KL

2. the best LM (3-gram vs 1-gram) to use for generating
lattices to get numerator posteriors for sequence-KL

The legend in Figure 1 shows the LM used for decod-
ing and the phone LM scale when generting supervision for
sequence-KL objective. In the experiments in this section, we
use the interpolated objective (1−β)FMMI+βFKL. Note that
the LF-MMI objective in all cases uses a 3-gram word LM for
decoding and a phone LM scale of 0.5 for interpolating phone
LM and word LM scores.

From Figure 1, when using a 3-gram word LM for decod-
ing, using a phone LM scale of 0.0 (Blue×) works better than
a phone LM scale of 0.5 (Red ◦). However, when using a 1-
gram LM for decoding, the WER degrades with a phone LM
scale of 0.0 (Orange ∗) and gets even worse than baseline for
large β. This problem is alleviated if a phone LM scale of 0.5
is used (Green 4), but is still worse than using 3-gram word
LM for decoding.

From this, we conclude that for unsupervised domain
adaptation, it is better to use a strong LM like 3-gram for gen-
erating numerator supervision. This is also computationally
advantageous because using strong 3-gram LM requires only
a single generation of lattices for both MMI and sequence-
KL, while using 1-gram LM requires regeneration of lattices
for sequence-KL. Further, when using a strong word LM,
interpolating the LM scores with phone LM scores is not
required and using a phone LM scale of 0.0 works the best.

The performance degradation when using a weak LM was
also reported in [10] for unsupervised speaker adaptation. But

Fig. 1. 8kHz Fisher ->16kHZ AMI-IHM WER(%) results:
Unigram vs 3-gram for sequence-KL. The solid lines show
results on eval and dashed lines on dev.
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we believe the degradation is larger in our case because we are
training the student network from scratch instead of initial-
izing from the teacher network. However, initializing from
teacher network is not straight-forward in our case since the
input features are different (16kHz vs 8kHz).

4.2.2. Multitask learning for domain mismatch

Multitask learning is one of the methods for transfer learning
in domain mismatch conditions. In [8], this was used for su-
pervised adaptation. Here we apply it in the semi-supervised
setting by training on the Fisher data (upsampled to 16kHz)
using LF-MMI and on the AMI-IHM data using an interpo-
lated objective (1 − β)FMMI + βFKL. Based on the results
in Section 4.2.1, we get numerator posteriors for sequence-
KL from lattices obtained by decoding using a 3-gram Fisher
word LM and using LM scores only from the word LM. We
share all the layers including the output for both Fisher and
AMI tasks. Figure 2 compares the two for various interpo-
lation factors. We see that semi-supervised training in the
multitask-type architecture (Red ◦) is better than training only
on the unsupervised data (Blue ×) in the target domain, giv-
ing an improvement of around 3% over the “Baseline”. It is
possible that training on a larger amount of data and also reg-
ularizing with supervised Fisher data (even if out-of-domain)
is helping the cause here. Since smaller β is better, we can say
LF-MMI is more effective than using sequence-KL for mul-
titask training in this domain mismatch case. We believe that
since the domains of the data used to train the teacher and stu-
dent networks are different (Fisher vs. AMI), the numerator
posteriors from the teacher are not very good for training the
student using sequence-KL. But, we can get better posteriors
from the student network by training using LF-MMI.



Fig. 2. 8kHz Fisher ->16kHz AMI-IHM WER(%) results:
Unsupervised vs semi-supervised multitask training. The
solid lines show results on eval and dashed lines on dev.
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4.3. Headset to Distant microphone speech

In this section, we report results on domain adaptation from
AMI individual headset microphone (IHM) speech to AMI
single distant microphone (SDM) speech. For the baseline
system, we use AMI-SDM data mixed with AMI-IHM data
augmented with reverberation and noise. For supervision,
we use lattices generated from a GMM system for AMI-
IHM data and use it for parallel reverberated AMI-IHM data
and AMI-SDM data as done in [18]. For unsupervised do-
main adaptation experiments, we consider two unsupervised
dataset – Mixer 6 [35] (We use only the telephone calls
portion) and ICSI [36]. As teacher network, we use a TDNN-
LSTM network trained on AMI-IHM data that is mixed with
revererated and noise augmented version of the same. This
teacher network was selected as it gave the best performance
on AMI-IHM dev and eval sets. For adaptation using mixer
6, we decode the mixer 6 headset microphone (MIC02) data
using the teacher network and a 3-gram Fisher word LM
to generate lattices. These lattices are converted into su-
pervision for data from the parallel far-field microphones
(MIC04-MIC13). Since the same data was recorded in multi-
ple microphones, we only kept a subset of 30% of the parallel
far-field data. For adaptation using ICSI, we decode the ICSI-
IHM data using the teacher network and the 3-gram AMI
word LM to generate lattices. These lattices are converted
into supervision for data from the parallel ICSI-SDM data.
We used all 4 available distant microphones, but adjusted the
training to train on these for one-fourth the number of epochs
as the rest of the data. In both the baseline and T-S learning
networks, we use the same i-vector extractor, which is trained
on the same AMI data used to train the baseline. For both the
adaptation, we use semi-supervised training in a multi-task
architecture wth supervised training with LF-MMI on the

Table 3. IHM ->SDM adaptation: WER(%) on AMI-SDM
dev and eval sets

Method β Hours dev eval
sup unsup

Baseline 0.0 80 0 34.0 37.2
T-S (Mixer 6) 0.5 80 110 31.8 35.3
T-S (ICSI) 0.5 80 80 32.5 36.3

same AMI data as the baseline network and unsupervised
training with an interpolated objective (1− β)FMMI + βFKL
on a mix of augmented (using reverberation and noise addi-
tion) headset mic data and distant mic data from Mixer 6 or
ICSI corpora.

The results in Table 3 show that T-S learning using paral-
lel data in Mixer 6 or ICSI for adaptation from IHM to SDM
improves WER over the baseline which uses only AMI data.
The improvement is found to be larger when using ICSI cor-
pus, probably because of the similarity of ICSI and AMI cor-
pora.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a teacher-student learning ap-
proach for unsupervised domain adaptation. Here, we use a
teacher network to decode the source domain data to gener-
ate supervision. The supervision is used with parallel target
domain data to train a student network using lattice-free
MMI, sequence-KL divergence or an interpolation of the
two objectives. We evaluated the performance on various
domain adaptation scenarios. Our main conclusion is to use
semi-supervised training in a multitask architecture with su-
pervised training using LF-MMI and unsupervised training
using an interpolation of LF-MMI and sequence-KL objec-
tives with 0.5 weight. When parallel data is available to deal
with feature domain mismatch such as for adaptation from
clean to noisy speech, we observe that sequence-KL is very
effective even when used for purely unsupervised training.
However when there is also large language domain mismatch
such as for adaptation from Fisher to AMI, semi-supervised
LF-MMI is preferable to using sequence-KL. For sequence-
KL objective, our proposed approach of using a strong LM
for getting numerator posteriors is better than using a weak
LM both in terms of WER and computational cost as we can
re-use the supervision generated for LF-MMI.

We hypothesize that sequence-KL might be helpful in
the beginning of training when initializing the network from
scratch, and will try in the future to vary the interpolation fac-
tor with LF-MMI as the training progresses. In the future, we
will also explore cases of adaptation using semi-supervised
LF-MMI and sequence-KL for retraining the network without
initializing from scratch. Further, we will explore these ideas
in the context of model compression.
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