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Abstract
In this paper, we introduce a speaker recognition benchmark
derived from the publicly-available CHiME-5 corpus. Our
goal is to foster research that tackles the challenging arti-
facts introduced by far-field multi-speaker recordings of nat-
urally occurring spoken interactions. The benchmark com-
prises four tasks that involve enrollment and test conditions with
single-speaker and/or multi-speaker recordings. Additionally,
it supports performance comparisons between close-talking vs
distant/far-field microphone recordings, and single-microphone
vs microphone-array approaches. We validate the evaluation
design with a single-microphone state-of-the-art DNN speaker
recognition and diarization system (that we are making pub-
licly available). The results show that the proposed tasks are
very challenging, and can be used to quantify the performance
gap due to the degradations present in far-field multi-speaker
recordings.
Index Terms: speaker recognition, multi-speaker, far-field
speech, robustness.

1. Introduction
The speaker recognition community has greatly benefited from
the evaluations hosted by the National Institute of Standards and
Technology (NIST) since 1996. The data and benchmarks as-
sociated with these evaluations has facilitated fair system com-
parisons as well as monitoring the state-of-the-art performance
over time. As a way to encourage participation, some of these
databases are only shared freely to participants. Which has lim-
ited the accessibility of these resources to the larger research
community. In the recent years, a new trend has emerged in
which research groups are collecting and freely sharing cor-
pora and evaluation protocols that focus on research aspects
that complement the directions explored in NIST evaluations
(mostly focused on telephone conversational speech). A pioneer
of this trend was the Speakers in the Wild (SITW) [1] corpus
and benchmark [2] organized by SRI in 2016. The corpus con-
tains hand-annotated speech samples from open-source media
acquired in unconstrained “wild” conditions. The benchmark
involved single-speaker and multi-speaker recordings for both
enrollment and test. Moreover, SITW allows using systems that
operate at 16 KHz sampling rate.

Another recent development was the release of the largest
publicly-available dataset combining the VoxCeleb-1 [3] and
VoxCeleb-2 [4] corpora. The goal was to provide a labeled set
(of similar size to those used by the face recognition commu-
nity) to train Deep Neural Networks (DNNs). As a result, wide-
band speech (16 KHz) from more than 7000 speakers is now
freely available. The speech was collected in similar conditions
to the SITW corpus. The authors also provide an evaluation pro-
tocol [4] that focuses on a large number of test speakers (around

1000 compared to the 300 speakers in SITW). In this work, we
use the VoxCeleb data to train our baseline system.

Additionally, the DeepMine database [5], mostly focused
in Persian, consists of more than 1800 speakers with very good
coverage of accents, speaker ages, and diverse mobile tele-
phony. A subset of the speakers also spoke English, which
allows cross-lingual studies. Along this line, the JSpeech [6]
multi-lingual corpus expands this area by providing 1332 hours
of chat group conversational speech in 47 languages from 12140
speakers.

Finally, the currently ongoing VOiCES [7] and Fearless
Steps [8] challenges also explore interesting areas. VOiCES
focuses on robustness to reverberation and background noises
of replayed speech, while Fearless Steps defines a more holistic
set of challenges using data from the Apollo-11 mission.

In this work, we contribute another dataset/benchmark that
complements this rich ecosystem. In addition, we are re-
leasing a Kaldi baseline system to facilitate further research.
The benchmark is derived from the publicly available CHiME-
5 corpus [9], which was initially designed to foster research
in multi-microphone distant/far-field automatic speech recog-
nition of multi-speaker, overlapping, conversational speech in
noisy environments. Here we reuse this data to build a speaker
recognition evaluation that explores those same conditions.
In particular, the interesting qualities of this benchmark are
that: i) it allows exploration of microphone-array beamform-
ing/enhancement, and comparison against single-microphone
approaches; ii) it is possible to compare the performance gap
between a close-talking recording vs simultaneously recorded
distant microphone versions; iii) it provides a great opportu-
nity for speaker diarization techniques that can process multi-
speaker enrollment and test segments.

2. Dataset
2.1. Summary of the CHiME-5 corpus

The CHiME-5 corpus [9] comprises twenty separate dinner par-
ties taking place in real homes. Each gathering has four partici-
pants that are friends with each other and act naturally. Most of
the participants attended two gatherings. The parties were or-
ganized in three phases which correspond to different locations
and activities around the house: i) kitchen, meal preparation;
ii) dining-room, eating the meal; iii) living-room, post-dinner
conversation. Participants were allowed to move naturally and
converse about topics of their choosing.

Each party was recorded using six Microsoft Kinect de-
vices (denoted as U01, U02, U03, U04, U05, and U06) that
were placed around the house to provide good coverage of the
activities. Each device contains a 4-microphone array that was
used to extract 4 channels of audio. In addition, each participant
wore a set of binaural microphones that provides close-talking
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Figure 1: Depiction of the procedure used to extract enrollment
and test segments from the CHiME-5 recordings. Audio seg-
ments are marked in yellow, and selected speaker utterances in
blue. Gray areas represent discarded regions/annotations.

recordings. All audio was distributed at 16 KHz sampling rate.
For each speaker, a reference transcription was manually

produced by listening to the binaural recording. Each utterance
was time marked with start and end times and time-aligned for
all devices using the binaural recording as reference (see Sec-
tion 4.1 in [9] for details).

2.2. Derived speaker recognition corpus

The main goals of the design were: i) to create a speaker
recognition benchmark in which the performance gap between
distant/far-field microphone and a close-talking microphone
could be measured; ii) to facilitate research to address the chal-
lenges introduced by overlapping multi-speaker conversational
speech in noisy and reverberant environments.

To accomplish these goals, we used the 18 parties assigned
to the Train and Dev partitions of the CHiME-5 challenge [9].
The remaining 2 parties in the Eval partition were set apart for
future use. The two channels of the binaural microphone were
summed into a single channel with equal weights. We refer
to this device as BIN throughout this paper. We dismissed the
arrays U03 and U05 since they had some technical problems
in portions of the recordings, and also dropped one of the 40
available speakers (P54) due to an unreliable close-talking mi-
crophone. Table 1 summarizes the properties of the derived cor-
pus.

Figure 1 shows the process used to extract enrollment and
test segments from the original CHiME-5 recordings. We de-
fine “segment” (yellow regions) as the contiguous audio chunk
that contains all the selected utterances (blue regions) from the
person of interest (POI). Each segment is stored as a separate
audio file when we process the CHiME-5 audio to produce our
derived corpus.

For enrollment, we only use the audio from the close-
talking recordings of their BIN device. For each speaker, we
selected the audio from the beginning of the first party they at-
tended. The target amount of speech was set between 40 and 60
seconds. We were highly selective in the utterances picked for
enrollment. Based on the time marks of the transcribed utter-
ances, we listened to the audio and only picked utterances with
low noise and no speaker overlap. For some of the speakers it
took up to one hour of the recording to collect enough speech.
This was mostly due to the presence of background noise and
simultaneous conversations between the participants. Although
this process might seem wasteful, we opted for this approach
to minimize the potential performance degradation due to noisy
enrollment speech. Figure 2a shows the total duration of the
enrollment utterances for each of the 39 speakers in the cor-

Table 1: Overview of derived speaker recognition corpus.

Enroll Test

Parties 11 17
Speakers 39 39
Devices BIN BIN, U01, U02, U04, U06
Segments 39 5 × 4439

pus. The average POI speech-to-segment duration ratio was 5%,
which highlights the high selectivity used in the process.

The remaining audio (not used for enrollment) was used for
the test partition. For each test segment, five time-aligned ver-
sions were extracted using the devices shown in Table 1 (for
the microphone arrays each segment comprises 4 audio files).
The target amount of speech was set between 10 to 30 seconds.
Unlike in the enrollment case, no quality assessment was used
to select the utterances to build the segments. That is, given
a target amount of desired speech, the segments were built by
sequentially including all the transcribed utterances until the du-
ration requirement was met. Figure 2b shows a histogram of the
total amount of speech in the generated test segments. A total of
4439 segments were generated from each device. A histogram
of the POI to segment duration ratio is shown in Figure 2c. The
mean and median values of this ratio are 40 and 36, respectively.

As part of our open source baseline system, we are releasing
a script that processes the original CHiME-5 distribution and
generates the audio segments and utterance annotations1.

3. Tasks definitions
We define four tasks based on two enrollment and two test con-
ditions. These conditions mimic those in the SITW corpus [1].
All tasks use the same segments but differ in the way they use
the provided time marks for the POI. We note that the task defi-
nitions are independent of the approaches used to solve it (e.g.,
single-microphone vs multi-microphone).

3.1. Enrollment conditions

In this benchmark, we only enroll one model per speaker.
Therefore, both enrollment conditions result in 39 models. The
two conditions are:

1. Core: The speaker is enrolled using only the annotated
utterances within the audio segment. Figure 2a shows
the total duration of the utterances for each speaker.

2. Assist: In addition to the annotated utterances, using
the entire segment is allowed. Since the enrollment seg-
ments are multi-speaker, diarization can find other utter-
ances from the POI.

3.2. Test conditions

1. Core: Only the annotated utterances within the test seg-
ment are used to compare against a speaker model. Fig-
ure 2b shows a histogram of the duration of the annotated
utterances.

2. Multi: The annotations are ignored and the system needs
to handle the presence of multiple speakers. Figure 2c
shows a histogram of the ratios of POI speech to test
segment duration.

1We are currently cleaning up the recipe and plan to make it avail-
able in the Kaldi repository during the next few weeks.
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(a) Total duration of the enrollment utterances selected for each of the 39 speakers in the corpus.
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Figure 2: Statistics of the derived speaker recognition corpus. See Section 2.2 for details.

3.3. Evaluation protocol

The protocol is the same for all four tasks, and it is designed as a
speaker detection problem in which we want to know whether a
given POI is present in a test segment or not. Each comparison
between an enrolled POI and a test segment is called a trial. If
the POI is present in the test segment, we refer to it as a target
trial. If it is not present, we call it a non-target trial.

To construct non-target trials, we score each model against
all the test segments from any other speaker that does not at-
tend the same parties (to guarantee that potential transcription
difficulties do not result in mislabelled non-target trials). This
results in a total of 778,025 (5×155,605) non-target trials.

To facilitate performance analysis across devices, we al-
ways include all 778,025 non-target trials (using all devices)
and break down performance by device of the test segments
used for the target trials (4439 per device). In this way, each
bar in Figure 3 was computed based on 4439 target trials and
778,025 non-target trials. We also report results averaging the
performance across devices.

When processing trials, systems can decide to process each
trial independently or using the other enrolled speakers. More-
over, the test segments obtained from the microphone arrays
offer the possibility of using multi-microphone approaches (4
mics per array) to process those test segments. When report-
ing results on these benchmarks, the system descriptions should
clearly disclose which one of these available alternatives were
used. All the baseline results reported in this paper process each
trial independently and use a single-microphone approach.

3.4. Metrics

Systems should report results in terms of equal error-rate (EER)
and minimum normalized detection cost (minC) [10] defined by
PTarget = 0.01, and CFA = CMISS = 1.

4. Baseline system
The baseline system uses a speaker recognition component
and an agglomerative hierarchical clustering (AHC) diarization
component. Both are based on the state-of-the-art DNN em-
bedding (x-vector) described in [11]. Diarization is used for the
Assist-enroll and the Multi-test conditions as described in [11].

4.1. Description

The first layers of the x-vector DNN operate on speech frames,
with a small temporal context centered around the current frame
t. A pooling layer, aggregates over the input segment, and com-
putes its mean and standard deviation. These segment-level
statistics are concatenated together and passed through the re-
maining layers of the network. The output layer computes pos-
terior probabilities for the training speakers.

The features are 30 dimensional MFCCs with a frame-
length of 25 ms, mean-normalized over a sliding window of
up to 3 seconds. Audio files are sampled at 16 kHz. The Kaldi
energy SAD is used to filter out nonspeech frames.

The system is trained on a large subset of the combined
VoxCeleb-1 [3] and VoxCeleb-2 [4] corpora. We removed
the overlapping speakers with the SITW corpus, which leaves
over 150,000 recordings from 7,185 speakers. We apply data
augmentation by adding noises, music, babble, and reverbera-
tion [12] . A training example consists of a 2–4 second speech
segment along with the corresponding speaker label.

Once the network is trained, x-vectors are extracted from
the first affine component after the pooling layer (512 dimen-
sions). The x-vectors are used as features for two different
PLDA classifiers: one for the diarization system, and one for
the speaker recognition system (both described in [11]).

The PLDA classifier for speaker recognition was trained on
the full-length recordings of VoxCeleb. We apply augmenta-
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Figure 3: Performance of Core-Core and Core-Multi (with and without diarization of the test segments) tasks broken down by device
of the target trials segments. Note that enroll is always based on the BIN device, and the non-target trials are pooled across all devices
for each entry in the plot.

Table 2: Performance of our baseline system on SITW and (for
context) the best submission to the 2016 official evaluation.

SITW Task Best 2016 [2] Baseline [11]
Enroll-Test EER(%) minC EER(%) minC
Core-Core 5.9 0.50 1.7 0.20
Assist-Core 4.5 0.40 1.6 0.20
Core-Multi 7.3 0.57 2.0 0.22
Assist-Multi 5.7 0.46 2.0 0.22

tion to double the amount of training data from about 150,000
to 300,000. Finally, the diarization classifier was trained on
256,000 three-second segments extracted randomly from the
full-length augmented recordings.

4.2. Results

Table 2 compares the performance of the baseline system with
respect to the best official submission (fusion of multiple sys-
tems) to the SITW 2016 evaluation. We show this to provide a
context for the strength of the baseline system, which highlights
the progress the community has made thanks to the availability
of more training data (VoxCeleb corpus) and the advances in
DNN architectures that efficiently use it. Additionally, compar-
ing the error rates with Table 3, we can see that the CHiME-
5 benchmark is extremely challenging (3x and 6x increase in
minC and EER, respectively).

Figure 3 shows the performance of the Core-Core, and
Core-Multi (with and without diarization of the test segments)
tasks for both metrics. The results are broken down by the de-
vice of the target trial segments. Recall that enrollment is al-
ways based on the BIN device and that the non-target trials are
pooled across all devices to increase the number of trials. For
both metrics and tasks, there is a significant degradation when
comparing the close-talking BIN microphone performance with
the far-field devices. For example, the Core-Core EER increases
approximately 10x and the minC around 6x. This shows that
there is a great opportunity for noise- and reverberation-robust
techniques to have an impact.

Looking at the Core-Multi results, when diarization is not
applied to the test segments (yellow bars), we can see that di-
rectly detecting a POI in a multi-speaker segment (ignoring the

Table 3: Performance averaged across devices for the tasks de-
fined in the derived CHiME-5 corpus.

Task w/o test diar w/ test diar
Enroll-Test EER(%) minC EER(%) minC
Core-Core 9.6 0.60 – –
Assist-Core 9.3 0.62 – –
Core-Multi 20.1 0.83 12.2 0.67
Assist-Multi 18.3 0.80 11.8 0.68

presence of other speakers) produces a significant degradation
with respect to the “oracle” diarization of the Core-Core condi-
tion. The gap between these two task shows the potential gains
available for diarization. Our diarization strategy seems to re-
cover a significant portion of this gap (orange bars); however,
the recovered amount is larger for the close-talking BIN micro-
phone than for the far-field devices. This highlights that the ar-
tifacts in the distant speech recordings also affect the diarization
system.

Finally, Table 3 shows the performance averaged across de-
vices for the four tasks. Ideally, increasing the amount of en-
rollment data for the Assist-enroll condition has the potential to
improve performance. However, we only observed small gains
with our baseline system. This indicates that leveraging the ad-
ditional POI utterances is challenging. Nonetheless, this opens
the door for more sophisticated approaches that use speech sep-
aration and enhancement to produce benefits.

5. Conclusions
The derived CHiME-5 speaker recognition benchmark is de-
signed to foster robustness against the artifacts introduced by
far-field multi-speaker recordings of naturally-occurring spoken
interactions. We have presented the process used to build the
benchmark and validated its design using a strong state-of-the-
art baseline. The observed performance shows that the proposed
tasks are extremely challenging. Moreover, the performance
gaps between close-talking vs far-field and single-speaker vs
multi-speaker recordings provide a clear indication of the po-
tential benefits of robust techniques against noise, reverberation,
speech overlap, and multi-speaker recordings.
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