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Abstract

This paper describes the system developed by the JHU team for
automatic speech recognition (ASR) of the VOiCES from a Dis-
tance Challenge 2019, focusing on single channel distant/far-
field audio under noisy conditions. We participated in the Fixed
Condition track, where the systems are only trained on an 80-
hour subset of the Librispeech corpus provided by the organizer.
The training data was first augmented with both background
noises and simulated reverberation. We then trained factor-
ized TDNN acoustic models that differed only in their use of
i-vectors for adaptation. Both systems utilized RNN language
models trained on original and reversed text for rescoring. We
submitted three systems: the system using i-vectors with WER
19.4% on the development set, the system without i-vectors that
achieved WER 19.0%, and the their lattice-level fusion with
WER 17.8%. On the evaluation set, our best system achieves
23.9% WER.
Index Terms: far-field speech recognition, VOiCES Challenge
2019

1. Introduction
Far-field automatic speech recognition (ASR) under reverberant
and noisy conditions is important in real-world applications of
ASR. Speech signal containing additive noises and reverbera-
tions can degrade the ASR performance considerably [1, 2, 3].
This problem remains challenging due to ambiguity of audio
signals, limited availability of training data with matched con-
ditions with those of test data, etc.

The VOiCES from a Distance Challenge 2019 [4, 5] aims
to benchmark and further improve state-of-the-art technologies
in the area of speaker recognition and ASR for far-field speech.
For the fixed condition of the ASR track, the training set con-
sists of an 80-hour subset of the LibriSpeech corpus [6] from
427 different speakers, recorded with close microphones in
quiet environments. The development and evaluation set consist
of 19 hours and 20 hours, respectively, of distant recordings in
environments representing different rooms, microphones, noise
distractors, and loudspeaker angles [4, 5]. The training set has
no overlaps in speakers with the development or evaluation set
of the VOiCES corpus. Note that there are significant mis-
matches between the training and development/evaluation set in
terms of the recording conditions, which makes this challenge
even more difficult.

There has been much work on ASR dealing with robustness
to reverberation [7, 8] and background noises [9, 10], including
frond-end-based [11, 12, 13, 14] and back-end-based [15, 16]
approaches. Among those, beamforming [17] is one of the most

common approaches for dereverberation, but it is only appli-
cable to multi-channel signals, which is not the case for the
VOiCES Challenge. On the other hand, several feature-based
and model-based adaptation techniques to the environment or
speakers have also been proposed, such as maximum likelihood
linear regression (MLLR) [18], vocal tract length normaliza-
tion [19], mean-variance normalization [20], vector Taylor se-
ries [21] and i-vectors [22, 23].

This paper presents the JHU ASR system for the VOiCES
Challenge in the fixed condition track. An overview of our sub-
mission systems is as follows. First, in order to increase the
amount of training data and mitigate its domain mismatch with
VOiCES test data, we augmented the training data with several
additive background noises, speed perturbation [24] and simu-
lated reverberation. Then we trained a factorized TDNN with
skip connections [25] acoustic model with lattice-free maxi-
mum mutual information (LF-MMI) criterion [26]. For lan-
guage modeling, 2 RNNLMs were trained on both forward
and backward (reversed) text separately and combined together
with the n-gram language model for lattice rescoring [27]. We
trained two complete systems, one is with i-vectors [22] as its
additional input, and the other is without i-vectors, and com-
bined these two systems on lattice level as the third submitted
system. Although i-vectors adaptation is generally not helpful
for domain mismatched data as in this challenge, the improved
performance after model combination implies its usefulness by
leveraging complementary information from both the speaker-
adapted system and the non-speaker-adapted system.

The remainder of this paper is organized as follows: Sec-
tion 2 illustrates how we augment the training data. Section 3
presents the details of our acoustic model. Section 4 describes
the RNNLMs used as well as the lattice rescoring methods. The
details of our experiments and analysis are given in Section 5.
We conclude in Section 6.

2. Data Augmentation
Given the fact that the training data has mismatched conditions
with those of the VOiCES test data, we augment the training
data with a number of datasets.

• Babble: a dataset consisting of audio files of 3 to 5 speak-
ers from the microphone portion of Mixer 6 [28] that
have been summed together to create babble noise.

• Music: the music files from the MUSAN corpus [29]1

that do not contain vocals.

• Noise: the noise files from the MUSAN corpus.

1http://www.openslr.org/resources/17
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• Reverb: simulated RIRs2 as described in [30].

To conform to the fixed condition of the challenge, the training
data consists only of the Librispeech-80h dataset plus augmen-
tations. We randomly apply additive noises from the “babble”,
“music” and “noise” datasets separately on each copy of the
clean training data N times. For each training example, “bab-
ble” is added as background noises 3 to 7 times with SNRs rang-
ing from 13 to 20; “music” is added as background noises once
with SNRs ranging from 5 to 15; “noise” is added as foreground
noises at the interval of 1 second with SNRs ranging from 0 to
15. Then reverberation is applied on top of them using the sim-
ulated RIRs with room sizes uniformly sampled from 1 meter to
30 meters. The above procedure leads to 3N times more aug-
mented training data. The alignments for these augmented data
are obtained from their clean counterparts. In addition, we ap-
ply 3-fold speed perturbation [24] to the clean training data. In
total, these augmentations increase the amount of training data
by 3N + 3 times, where N is a hyper-parameter whose impact
we will report in the experiment section.

3. Acoustic Modeling
We use factorized TDNN (F-TDNN) with skip connections [25]
for acoustic modeling. Table 1 summarizes the layers. The F-
TDNN reduces the number of parameters of the network by fac-
torizing the weight matrix of each TDNN layer into the prod-
uct of two low-rank matrices, the first of which is constrained
to be semi-orthogonal. It is assumed that the semi-orthogonal
constrain helps to ensure that we do not lose information when
projecting from the high dimension to the low dimension.

The authors of the original paper found that, instead of
factorizing the TDNN layer into a convolution times a feed-
forward layer, it is better to factorize the layer into two convo-
lutions with half the kernel size. For example, instead of using
a kernel with context (−3, 0,+3) in the first factor of the layer
and 0 context in the second factor, it is better to use a kernel
with context (−3, 0) in the first factor and a kernel with context
(0,+3) in the second factor.

As in other architectures like ResNet [31], we incorporate
skip connections. This means that for some layers, they receive
input not only from the previous layer but also from other prior
layers. This allows us to make the network deeper by alleviating
the vanishing gradient problem. In the original paper [25], the
prior layers were concatenated to the input of the current layer,
and the skip connections were created between the low-rank in-
terior layers of the F-TDNN. However, we found in our pre-
liminary experiments that the following modifications are more
helpful: 1) instead of individually specifying the skip connec-
tion, each F-TDNN layer always receives its immediate prior
layers output as the skip connection, and 2) instead of con-
catenation, the prior layer is added to the input of the current
layer after being scaled down with a constant (0.75 in our ex-
periments). As shown in Table 1, we use 16 F-TDNN layers,
with dimension 1536 and linear bottleneck layers of dimension
160. Note that BatchNorm applied after each ReLU is omitted
in Table 1 for brevity. The acoustic model has about 20 million
parameters.

For acoustic model training ,we use the LF-MMI objective
function:

FLF-MMI =

N∑
n=1

log
P (On|Ln)κP (Ln)∑
L P (On|L)κP (L)

(1)

2http://www.openslr.org/resources/28

Table 1: Factorized TDNN architecture for acoustic modeling
in ASR systems.

Layer Layer Type Context
factor1

Context
factor2

Skip conn.
from layer

Size Inner
size

1 TDNN-ReLU t 1536
2 F-TDNN-ReLU t-1, t t, t+1 0 (input) 1536 160
3 F-TDNN-ReLU t-1, t t, t+1 1 1536 160
4 F-TDNN-ReLU t-1, t t, t+1 2 1536 160
5 F-TDNN-ReLU t t 3 1536 160
6 F-TDNN-ReLU t-3, t t, t+3 4 1536 160
7 F-TDNN-ReLU t-3, t t, t+3 5 1536 160
8 F-TDNN-ReLU t-3, t t, t+3 6 1536 160
9 F-TDNN-ReLU t-3, t t, t+3 7 1536 160
10 F-TDNN-ReLU t-3, t t, t+3 8 1536 160
11 F-TDNN-ReLU t-3, t t, t+3 9 1536 160
12 F-TDNN-ReLU t-3, t t, t+3 10 1536 160
13 F-TDNN-ReLU t-3, t t, t+3 11 1536 160
14 F-TDNN-ReLU t-3, t t, t+3 12 1536 160
15 F-TDNN-ReLU t-3, t t, t+3 13 1536 160
16 F-TDNN-ReLU t-3, t t, t+3 14 1536 160
17 F-TDNN-ReLU t-3, t t, t+3 15 1536 160
18 Linear 256
19 Dense-ReLU-Linear 256 1536
20 Dense N. targets

where Ln is the phone sequence of the n-th utterance and
P (L) is the phone language model estimated from the previ-
ous HMM-GMM phone alignments.

4. Language Modeling
We follow Kaldi-RNNLM [32] to train TDNN-LSTM language
models using the transcripts of Librispeech-80h. The LM is
trained using the objective denoted in Equation (2).

JLM = zl + 1−
∑
i

exp zi (2)

where in the equation, z denotes the neural-network output be-
fore the last softmax operation, and l is the index of the correct
word. This objective function is a linear approximation of the
standard cross-entropy objective as denoted in Equation (3) but
is a lower-bound of cross-entropy.

JCE = zl − log
∑
i

exp zi (3)

Using the new objective function allows the trained
RNNLMs to self-normalize during inference and thus saves
computational time. Also, the linearity of the objective allows
a sampling-based method to be adopted during training which
could significantly speed up training.

For representations of the words, letter n-gram features are
combined with one-hot vectors in generating word-embeddings
as described in [32]. We extract the most frequent words and
letter n-grams from the training corpus, where each word/letter
n-gram would be associated with its embedding. To generate
the word-embedding for a word, we compute it as the sum of the
embeddings of all the “features” it has. This allows us to utilize
spelling information of a word in generating embeddings, and
gives better embedding to words that appear relatively rare in
the corpus.

To further improve the performance, on top of training a
standard RNNLM on the training corpus, we also reverse the
corpus text and train a “backward” RNNLM on that. When
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applying rescoring, the scores are averaged between the forward
RNNLM scores and that from backward RNNLM (scored on
reversed text).

We perform pruned lattice-rescoring [27] to combine the
weights of the 2 RNNLMs with the original n-gram weights,
where the weights for forward-RNNLM, backward-RNNLM,
and the original n-gram are 0.3, 0.3, 0.4 respectively. Language
models are also trained only on transcripts of the Librispeech-
80h dataset.

5. Experiments
5.1. Baseline

For the baseline system, we follow the standard Kaldi [33]
recipe3 for HMM-GMM training on the original Librispeech-
80h data up to the speaker adapted training with pronunciation
and word-specific silence probabilities modeling [34]. The n-
gram language model is trained on a vocabulary of size 200k
with max-entropy criterion. Alignments and numerator lattices
generated from the HMM-GMM model are used for neural net-
work acoustic model training with the F-TDNN network and
the LF-MMI criterion with cross-entropy regularization [26].
The features are 40 dimensional MFCCs extracted from the 16
kHz data. The baseline also incorporates i-vectors as an addi-
tional input features, as is standard in the Kaldi ASR recipes:
the UBM uses a 512 component GMM and the i-vector extrac-
tor is trained on the clean Librispeech-80h data and then 100
dimensional embeddings are extracted. The results on the de-
velopment/evaluation set are presented in Table 2.

Table 2: WERs on Dev and Eval set with baseline models.

System Dev (%) Eval (%)

GMM 79.5 87.0
F-TDNN 68.3 78.6

5.2. Data Augmentation

We investigate how different amount of augmented data affect
the performance, and vary N (as described in Section 2) to in-
crease the amount of augmented data by 6x, 12x and 18x, lead-
ing to a total training data of the size 480 hrs, 960 hrs and 1440
hrs respectively. The results are shown in Table 3, where we
observe significant gain from 480 hrs to 960 hrs, but no further
gains are attained when more augmentation data was added. We
stick to the 960 hrs for later experiments.

Table 3: WER on Dev set with different amount of data augmen-
tation.

Data Amount (hrs) Dev (%)

480 24.5
960 22.3
1440 23.1

5.3. I-vectors Adaptation

Since there exists severe domain mismatch between VOiCES
test data and Librispeech-80h data which i-vector extractor is

3https://github.com/kaldi-asr/kaldi/blob/
master/egs/librispeech/s5/run.sh

Table 4: WERs on Dev set with/without i-vectors.

Dev (%)

with i-vectors 22.3
without i-vectors 21.5

trained on, it is possible that the extracted i-vectors from the
development/evaluation data do not represent the speaker char-
acters well. Therefore, we remove i-vectors from our previous
system, while keep applying speaker-level cepstral mean sub-
traction (CMN) on training data and utterance-level CMN on
development data4. We can see from Table 4 that removing i-
vectors help improve the performance.

5.4. RNNLM Rescoring

We utilize RNNLMs for 2nd pass rescoring. All hyper-
parameters regarding RNNLMs are tuned based on the system
without i-vectors. The network dimensions are tuned on WER
scores on the dev data, and the numbers are shown in Table 5,
where the WER numbers are based on lattice-rescoring with a
language model weight of 0.5. We fix the LSTM dimension to
be 1024 since it gives the best performance.

Table 5: RNNLM hyper-parameter tuning.

num-layers LSTM-dim Dev-Perplexity Dev-WER (%)

2 512 298.3 20.0
2 1024 291.2 19.6
2 2048 300.1 19.8

For rescoring algorithm, we investigate both lattice-
rescoring and n-best list rescoring to utilize RNNLMs. The
comparison of the 2 methods is shown in Table 6. We see that
in all settings, lattice-rescoring significantly outperforms n-best
rescoring. We also notice there is significant speed difference in
the experiments where lattice-rescoring experiments run much
faster than n-best, so we use lattice-rescoring for all later exper-
iments.

Table 6: WER comparison between n-best and lattice rescoring
on Dev set.

rescoring method Dev (%)

lattice 19.6
n-best (n=20) 20.7
n-best (n=50) 20.3

We perform lattice-rescoring to utilize the 2 RNNLMs
trained on original and reversed texts. For the RNNLM trained
on standard text, we follow [27] in performing lattice-rescoring
on the generated lattices. The algorithm computes a heuristic
score for each arc to be expanded in the output lattice, and pri-
oritize “better” arcs and discard unpromising arcs. The heuristic
score reflects how likely this arc is going to be part of the best
path after rescoring, and considers both history and future in-
formation in the lattices.

After the rescoring is done, we reverse the lattice and
perform another round of lattice rescoring with the RNNLM

4Since batch-level processing is not allowed for evaluation, speaker-
level CMN is not applied on development/evaluation data.
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Table 7: RNNLM weights and WERs on Dev set.

RNNLM weights Dev (%)

0.2 19.4
0.3 19.0
0.4 19.0
0.5 19.2

trained on reversed texts. After this procedure, the lattices are
reversed again where we find the best-path. Table 7 reports
the impact of RNNLM weights on WERs, where the weights
reported are shared by both forward and backward RNNLM
(For example, if weight = 0.3, it means the weights for both
RNNLMs are 0.3, and the weight for the original n-gram is 0.4).
We use weight = 0.3 for later experiments since it gives the best
performance.

5.5. Model Fusion

We combine the two RNNLM rescored lattices from the above
two systems (i.e. with and without i-vectors adaptation) into
a single lattice to obtain a third system. It is achieved by re-
moving the total cost of all paths (backward cost) from individ-
ual lattices and performing a union of the reweighted lattices,
where the combination weights are 0.5 and 0.5 respectively.
Then Minimum Bayes Risk decoding [35] is applied on top of
the combined lattice. The improvement demonstrated in Table 8
implies complementarity of the two single systems.

Table 8: WERs of the individual systems and their fusion on Dev
and Eval set.

System Dev (%) Eval (%)

F-TDNN ivec 19.4 26.3
F-TDNN noivec 19.0 25.3

fusion 17.8 23.9

5.6. Performance Analysis

We analyze the performance of our best system (the third row of
Table 8) on the development/evaluation set, by breaking them
down into different recording environments using the meta-
data [36] provided by the organizer.

We note that there is a performance gap between WER on
the development set (17.8%) and the evaluation set (23.9%).
We also notice that the room-ids in the development set only
consist of “rm1” or “rm2”, while in the evaluation set there
are additional rooms “rm3” and “rm4”. So we break down the
results into different rooms as shown in Table 9. The perfor-
mance for “rm1” and “rm2” on the evaluation set is comparable
to those on the development set, which indicates that there is
not much difference in performance between the development
and evaluation set for these two rooms. However, our system
performs significantly worse for “rm3” and “rm4” on the eval-
uation set. According to the data description website [36], the
size of “rm1” and “rm2” is 3.7 m × 2.7 m and 5.7 m × 4.0 m
respectively, both of which are within the ranges of our simu-
lated rooms described in Section 2. We do not have information
regarding the room sizes of “rm3” and “rm4”.

Next we break down the results according to different dis-
tractor types (in Table 10) and microphone locations and types
(in Table 11). One of the observations is that the distractor

Table 9: Breakdown of the best system’s performance according
to room-ids.

Room-id Dev (%) Eval (%)

rm1 18.0 18.9
rm2 17.7 18.3
rm3 — 31.8
rm4 — 26.7

“babb”, microphone location “far” and microphone type “lav”
make the performance worst among the others in their respec-
tive types.

Table 10: Breakdown of the best system’s performance accord-
ing to distractor types.

Distractor Type Dev (%) Eval (%)

none 14.6 24.8
musi 19.3 22.0
tele 18.0 19.0

babb 19.4 28.7

Table 11: Breakdown of the best system’s performance accord-
ing to microphone locations and types.

Dev (%) Eval (%)

Mic Loc
clo 13.9 22.6
mid — 24.4
far 20.9 25.8
beh 17.2 16.8
ceo 20.6 21.1
tbo 20.6 —

Mic Type
stu 12.0 22.9
lav 19.0 24.7

6. Conclusions
In this paper we describe the JHU ASR system in the fixed
condition for VOiCES from a Distance Challenge 2019. The
features of our systems include data augmentation with var-
ious additive noises and simulated reverberations, factorized
TDNN acoustic model with skip connections, RNNLMs trained
on both forward and backward text, and model fusion from both
the system with i-vectors and the system without i-vectors. The
final fused system achieves WER 17.8% on the development set
and 23.9% on the evaluation set. In particular, we also observe
that due to domain mismatch, i-vectors trained on clean data
does not help in the test condition for single systems.
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