
The JHU Speaker Recognition System for the VOiCES 2019 Challenge

David Snyder1,2, Jesús Villalba1, Nanxin Chen1, Daniel Povey1,2, Gregory Sell2, Najim Dehak1,
Sanjeev Khudanpur1,2

1Center for Language and Speech Processing
2Human Language Technology Center of Excellence

Johns Hopkins University, Baltimore, MD, USA
david.ryan.snyder@gmail.com

Abstract
This paper describes the systems developed by the JHU team
for the speaker recognition track of the 2019 VOiCES from a
Distance Challenge. On this far-field task, we achieved good
performance using systems based on state-of-the-art deep neu-
ral network (DNN) embeddings. In this paradigm, a DNN maps
variable-length speech segments to speaker embeddings, called
x-vectors, that are then classified using probabilistic linear dis-
criminant analysis (PLDA). Our submissions were composed of
three x-vector-based systems that differed primarily in the DNN
architecture, temporal pooling mechanism, and training objec-
tive function. On the evaluation set, our best single-system sub-
mission used an extended time-delay architecture, and achieved
0.435 in actual DCF, the primary evaluation metric. A fusion of
all three x-vector systems was our primary submission, and it
obtained an actual DCF of 0.362.
Index Terms: speaker recognition, VOiCES Challenge 2019

1. Introduction
In this paper, we describe the speaker recognition systems
developed by the Johns Hopkins University (JHU) team for
the Voices Obscured in Complex Environmental Settings
(VOiCES) challenge [1, 2]. The challenge, developed by
SRI International and Lab41, aims to measure state-of-the-art
speech processing in challenging far-field and noisy conditions.
The challenge was split into tracks for automatic speech recog-
nition and speaker recognition, and consists of Librispeech
[3] recordings replayed in several differently-sized rooms and
recorded by an assortment of microphones. Simultaneously,
various distractor noises such as music, babble, or television
were played. As a consequence, participants needed to develop
systems that were robust to this reverberant and noisy speech.
The task was split into a fixed condition, where only specified
speech material could be used to train systems, and an open
condition that permitted participants to explore the benefits of
more extensive training sets. Our team participated in only the
fixed condition of the speaker recognition track.

Recently, the field of text-independent speaker recognition
has advanced significantly due to the development of practical
neural network-based speaker embeddings [4, 5, 6, 7]. This
paradigm, which has now replaced i-vectors [8] as the state-of-
the-art, is based on deep neural networks (DNNs) trained to dis-
criminate between speakers at the level of speech segments. To
obtain segment-level representations, a temporal pooling layer
aggregates across frame-level representations to compute a sin-
gle set of statistics per input segment. In our early work, the
pooling mechanism computed the mean and standard deviation
of the frame-level representations [4], but several studies have
extended it to include multi-head attention [9, 10] and learnable

dictionary layers [11, 12]. Once the statistics are computed,
they are mapped to a segment-level representation, which we
call an x-vector. After the x-vectors are extracted, the back-
end technology developed for i-vectors can be reused, particu-
larly probabilistic linear discriminant analysis (PLDA) [13, 14]
and domain adaptation techniques [15]. The impact of this
new framework was clearly demonstrated in the 2018 NIST
Speaker Recognition Evaluation (SRE), where top-performing
teams adopted DNN embeddings in lieu of traditional systems
based on i-vectors. For the VOiCES challenge, we developed
three x-vector systems based on systems that achieved excel-
lent results on SRE 2018.

The report is organized as follows. Section 2 lists the re-
sources used for training, augmentation, and evaluation of the
performance of the systems. In Section 3, we describe the three
types of DNN embedding-based speaker recognition systems
we used in the challenge. In Section 4 we report and analyze
results on the development and evaluation datasets. Finally, in
Section 5 we conclude the paper.

2. Datasets
2.1. VOiCES datasets

The challenge provided a development set Dev, with 196 speak-
ers and about 16,000 audio segments, that was used for system
development and tuning. To facilitate domain adaptation, we
split the development set into two parts, Dev1, which is made up
of speakers from Dev with even-numbered speaker labels, and
Dev2, which consists of odd-numbered speakers. The evalua-
tion set Eval, was only used to evaluate the submitted systems.

2.2. Training datasets

We only trained systems that conform to the requirements of
the fixed condition of the challenge [2]. We used the following
datasets in our submissions.

• VoxCeleb-1+2: the official distributions of VoxCeleb 1
[6] and 2 [16], which consist of video recordings that
have been split into short segments.

• VoxCelebCat-1+2: segments from VoxCeleb-1+2 have
been concatenated together by video ID.

• SITW: single-speaker segments from the Speakers in the
Wild dataset [17].

2.3. Augmentation datasets

Data augmentation increases the amount and diversity of the
training data, and is a crucial step to obtaining good DNN
embedding-based speaker recognition systems [7]. In addition,
a set of well-chosen augmentations should reduce the mismatch

Copyright © 2019 ISCA

INTERSPEECH 2019

September 15–19, 2019, Graz, Austria

http://dx.doi.org/10.21437/Interspeech.2019-29792468

Table 1: Extended TDNN x-vector architecture

Layer Layer Type Context Size

1 TDNN-ReLU t-2:t+2 512
2 Dense-ReLU t 512
3 TDNN-ReLU t-2, t, t+2 512
4 Dense-ReLU t 512
5 TDNN-ReLU t-3, t, t+3 512
6 Dense-ReLU t 512
7 TDNN-ReLU t-4, t, t+4 512
8 Dense-ReLU t 512
9 Dense-ReLU t 1500
10 Pooling (mean+stddev) Full-seq 2x1500
11 Dense(Embedding)-ReLU 512
12 Dense-ReLU 512
13 Dense-Softmax Num. spks.

of the domain of the training data with that of the VOiCES data
by simulating its noisy and reverberant conditions. We utilized
the following augmentation datasets.

• Babble: a dataset composed of audio files of 3 to 5 speak-
ers from the microphone portion of Mixer 6 [18] that
have been summed together to create babble noise.

• Music: the music files from the MUSAN corpus [19]1

that do not contain vocals.
• Noise: the noise files from the MUSAN corpus.
• Reverb: simulated RIRs from the AIR dataset 2.

3. SID Systems
We developed three systems based on x-vectors [7] with Gaus-
sian PLDA classifiers [13]. The first two are built using the
Kaldi speech recognition toolkit [20], and use either a deep
time-delay architecture (see Section 3.1) or in conjunction with
factorized layers (see Section 3.2). The final system, de-
scribed in Section 3.3 was built using Pytorch, and is based on
ResNet34. All systems were developed using 16 kHz audio.

3.1. Extended TDNN X-vector System

This architecture, abbreviated in Table 3 as etdnn, uses the “ex-
tended” x-vector architecture described in [21]. Table 1 sum-
marizes the architecture. The two main differences between
this architecture and our earlier work (such as [7]) is a slightly
wider temporal context of the frame-level layers and the inter-
leaving of dense layers in between the convolutional layers (this
is equivalent to the 1x1 convolutions used in computer vision ar-
chitectures). This architecture has been found to greatly outper-
form the architecture described in [7] for the SITW and SRE16
benchmarks, and was our best performing system in SRE18.

The features to the network are 30 dimensional MFCCs,
which are centered over a 3 second sliding window. After cen-
tering, the Kaldi energy VAD was used to remove non-speech
based on the average log-energy in a given window. This VAD
requires no training data.

The output of the network is the posterior probabilities of
the training speakers and it is trained to minimize a categorical
cross entropy. After training, the x-vectors are extracted from
layer 11 prior to the ReLU non-linearity. The number of param-
eters in this architecture is 8 million, but only 4 million are used
for extracting the x-vector.

1http://www.openslr.org/17
2http://www.openslr.org/28

Table 2: Factorized TDNN x-vector architecture

Layer Layer Type Context
factor1

Context
factor2

Skip conn.
from layer

Size Inner
size

1 TDNN-ReLU t-2:t+2 512
2 F-TDNN-ReLU t-2, t t, t+2 725 180
3 F-TDNN-ReLU t t 725 180
4 F-TDNN-ReLU t-3, t t, t+3 725 180
5 F-TDNN-ReLU t t 3 725 180
6 F-TDNN-ReLU t-3, t t, t+3 725 180
7 F-TDNN-ReLU t-3, t t, t+3 2, 4 725 180
8 F-TDNN-ReLU t-3, t t, t+3 725 180
9 F-TDNN-ReLU t t 4, 6, 8 725 180
10 Dense-ReLU t t 1500
11 Pooling (mean+stddev) full-seq 2x1500
12 Dense-ReLU 512
13 Dense-ReLU 512
14 Dense-Softmax N. spks.

The DNN was trained on the 7,185 speakers in the
VoxCeleb-1+2 dataset described in Section 2. Using the aug-
mentations described in Section 2 plus simulated GSM AMR
phone encodings3, we multiply the amount of training data by
6 times, which increased the number of segments from 1.2 mil-
lion to 7.2 million. From these 7.2 million segments, we extract
108 million shorter segments that are between 2 and 3 seconds
long, and train the DNN on those for 6 epochs.

The back-end consists of centering, LDA (from 512 to 200
dimensions), length-normalization, and scoring using a Gaus-
sian PLDA model. The training data for the LDA transform
and the unadapted PLDA model were the longest 200,000 seg-
ments from VoxCeleb-1+2, along with the augmentations drawn
from Section 2.3 which increased the total amount to 800,000
segments. Domain adaptation was handled by using Dev1 for
centering and PLDA adaptation (with α = 0.10 as described in
Section 3.4) when scoring Dev2, and Dev2 when scoring Dev1.
When scoring on the evaluation data, we adapted to Dev.

3.2. Factorized TDNN X-vector System

For the second x-vector architecture, we replaced the pre-
pooling layers by a factorized TDNN (called ftdnn in Table 3)
with skip connections [22]. Table 2 summarizes the layers in
our F-TDNN x-vector. The F-TDNN reduces the number of
parameters of the network by factorizing the weight matrix of
each TDNN layer into the product of two low-rank matrices.
The first of those factors is constrained to be semi-orthogonal.
It is assumed that the semi-orthogonal constrain will help to as-
sure that we do not lose information when projecting from the
high dimension to the low-rank dimension.

The authors of the original paper found that, instead of
factorizing the TDNN layer into a convolution times a feed-
forward layer, it is better to factorize the layer into two convo-
lutions with half the kernel size. For example, instead of using
a kernel with context (-2, 0, 2) in the first factor of the layer and
0 context in the second factor, it is better to use a kernel with
context (-2,0) in the first factor and a kernel with context (0, +2)
in the second factor.

As in other architectures like ResNet [23], we incorporate
skip connections. This means that some layers receive as input,
not only the previous layer but also the output from other prior
layers. The prior layers were concatenated to the input of the
current layer, instead of summed like in ResNet. This allows
us to make the network deeper by alleviating the vanishing gra-
dient problem. According to [22], the best option is to create
skip connections between the low-rank interior layers of the F-
TDNN.

3http://www.3gpp.org/ftp/Specs/archive/26_
series/26.073/26073-800.zip

2469

The features for this network were 40 dimensional MFCCs
short-time centered with a 3 second sliding window. Speech ac-
tivity detection (SAD) was performed using a pretrained Kaldi
SAD model, based on the Aspire recipe4. X-vectors were ex-
tracted from layer 12 before the ReLU non-linearity. The x-
vector network was trained on the VoxCelebCat-1+2 dataset
with the augmentations described in Section 2.3. This multi-
plies the amount of training by 3 times. The network is then
trained for three iterations.

The back-end consisted of LDA from 512 to 300 dimen-
sions, centering, whitening, length normalization and Gaussian
simplified PLDA model. The training data for the back-end was
the same as for the x-vector network. The centering and PLDA
within-class covariance matrix were adapted to the voices de-
velopment set with α = 1 and α = 0.3 respectively (see Sec-
tion 3.4). To score the Dev1, we adapted the model using Dev2,
and vice-versa. To score the eval set we adapted using the whole
development set.

3.3. ResNet34-LDE System

The ResNet-LDE (called resnet in Table 3) is a variant of the x-
vector system where the TDNN layers are replaced by a residual
network with 2D convolutions (ResNet34) [23] and the pool-
ing layer is replaced by a learnable dictionary encoding (LDE)
layer [11, 12].

The original x-vector framework assumes that the frame-
level TDNN representations before the pooling layer are uni-
modal. Thus, to pool those representations, we just compute
their mean and standard deviation. Instead, the LDE pooling
assumes that frame-level representations are distributed in C
clusters and it learns a dictionary with the centers of those clus-
ters. This is reminiscent of the GMM-i-vector paradigm. The
component posteriors are obtained as,

wt,c =
exp(−sc ‖xt − µc‖2 + bc)∑C
c=1 exp(−sc ‖xt − µc‖2 + bc)

(1)

where sc is an isotropic precision; and bc includes the log-
weight and log-normalizing constant of the Gaussian. The bias
term was not included in the original paper but we found that it
slightly improves the results.

Then, we compute an embedding per component

ec =

∑T
t=1 wt,c(xt − µc)∑T

t=1 wt,c

c = 1, . . . , C (2)

and we concatenate together the embeddings for all the compo-
nents e = (eT

1 , . . . , e
T
C)

T. This embedding has the same role
as the super-vector in GMM-i-vectors. This super-vector is pro-
jected to a lower dimension to obtain the x-vector embedding.
This projection has the same role as the total variability matrix
in i-vectors.

Instead of using the categorical cross-entropy for training,
we used the angular softmax loss [24]. The angular softmax loss
has stronger requirements for correct classification whenm ≥ 2
(an integer that controls the angular margin), which generates an
angular classification margin between embeddings of different
classes [12, 25]. Prior to training with the angular softmax loss,
we first pre-train with the categorical cross entropy, and use the
resulting model for initialization.

This x-vector system uses 40 dimensional log-filter-bank
features. The VAD, training data and back-end are the same as
in the F-TDNN x-vectors described in Section 3.2.

4http://kaldi-asr.org/models/m4

3.4. PLDA Adaptation

In each system, we adapt the original out-of-domain PLDA
with the development data, using the parameter interpolation
method [15]. When producing scores for Dev1, we use Dev2
for adapation, and vice versa. When producing scores for Eval,
we adapt using all of Dev. In the adapted model, the within-
class and across-class covariances are a weighted sum of the
out-of-domain Sout and in-domain Sin covariances,

Sadapt = αSin + (1− α)Sout (3)

3.5. Calibration and fusion

Fusion and Calibration was performed using linear logistic re-
gression with the Bosaris toolkit [26]. To select the best fusion
combination, we followed a greedy fusion scheme. First, we
calibrate all the systems and select the best one given the lowest
actual cost. We fix that as the best system and evaluate all the
two system fusions that include the best system, and select this
as the best fusion of two systems. We fix those two systems and
then add the third system. To reduce the chances of over-fitting,
we prioritize fusions with only positive weights.

4. Results
In this section, we report results of the three x-vector-based sys-
tems as well as their fusions on the development and evaluation
data, abbreviated as Dev and Eval respectively. In Table 3 the
extended TDNN, ResNet34+LDE, and factorized TDNN sys-
tems are abbreviated as etdnn, resnet, and ftdnn respectively.
The first block of the table shows the results of the individual
systems and their fusions on the entire Dev and Eval sets. In the
second block, the performance of one representative system is
broken down by noise condition. In the third block, we present
performance by microphone position; we selected a few repre-
sentative positions out of a larger set. The final block breaks
down the performance of a single system by domain adaptation
techniques. Results are reported in terms of the primary evalua-
tion metric used by VOiCES 2019, which was the actual detec-
tion cost function with Ptar = 0.01 and equal costs of misses
and false alarms (Act DCF); the minimum of the detection cost
function (Min DCF); and the equal error rate (EER).

4.1. Submissions

In Table 3, we see that the etdnn system achieved the best
single-system results on Dev, with an Act DCF of 0.17. In com-
parison, the other two systems obtained slightly over 0.2 Act
DCF. The fusion of the etdnn and resnet systems improved over
the etdnn system alone, by 23% in Act DCF, and the fusion
of all three systems was slightly better. As a result of the ob-
served Dev performance, our submission to the challenge con-
sisted of three systems: a primary system consisting of the fu-
sion of etdnn, resent and ftdnn (system #5 in Table 3); a system
using etdnn alone (system #1 in Table 3); and the fusion of the
etdnn and resnet systems (system #4 in Table 3).

The last three columns of Table 3 show the performance of
our submissions on the Eval data. We observe that calibration
on Dev was effective, as the difference between the Min DCF
and Act DCF is small. However, error rates in general are much
higher on the Eval set. On the Dev set, our primary submis-
sion obtained an EER of about 1%. However, on Eval set this
was almost 5x higher. Although the etdnn system achieved the
best single-system performance on Dev, that was not reflected
in the Eval performance. On the Eval data, all three systems

2470

Table 3: Results on the VOiCES Dev and Eval data, followed by a breakdown by noise condition, mic. position and adaptation type.

VOiCES 2019 Dev VOiCES 2019 Eval
Systems EER[%] Min DCF Act DCF EER[%] Min DCF Act DCF
1 etdnn 1.50 0.169 0.170 5.87 0.432 0.435
2 resnet 1.55 0.209 0.210 5.09 0.417 0.419
3 ftdnn 1.46 0.202 0.203 6.18 0.438 0.439
4 fusion 1,2 1.12 0.131 0.132 4.83 0.364 0.370
5 fusion 1,2,3 1.03 0.128 0.129 4.80 0.355 0.362

ftdnn noise cond
all 1.46 0.202 0.203 6.18 0.438 0.439

none 1.05 0.173 0.175 3.91 0.349 0.350
babble 1.56 0.213 0.215 9.24 0.579 0.581
music 1.61 0.222 0.224 - - -

TV 1.48 0.200 0.200 4.90 0.385 0.386

ftdnn mic position
closest 1.20 0.167 0.168 2.60 0.273 0.275

mid-distance 1.63 0.204 0.206 2.81 0.261 0.265
farthest 1.80 0.231 0.233 9.78 0.601 0.603

wall (fully obstructed) 1.91 0.229 0.230 15.12 0.874 0.876

ftdnn adaptation
none 1.68 0.225 0.227 6.10 0.435 0.439

s-norm 2.01 0.240 0.241 7.06 0.420 0.445
plda 1.46 0.202 0.203 6.18 0.438 0.439

plda + s-norm 1.72 0.208 0.209 7.08 0.418 0.432

performed similarly, with resnet slightly better than the other
two. The fusion of etdnn and resnet improved performance over
etdnn alone (our single-system submission) by 15% in Act DCF,
while the fusion of all three systems was better by 17%.

4.2. Noise Conditions

In an effort to better understand why error rates on the Eval
data are so much higher than the Dev data, we’ve broken down
the results for the ftdnn system by noise condition. Note that
the trends are quite similar for the other systems. As expected,
the condition without any distractor noises (none in Table 3)
resulted in the best performance for both Dev and Eval at all
operating points. Error rates on the Eval data are higher than
the Dev data in general, and this is true even for the condition
without any noise applied. So it is likely that the higher error
rates are due to more challenging rooms or microphone types
used in the Eval data, rather than the distractor noises. It is also
possible that noise volume was louder in the eval data or that
the noise source was closer to the microphones. The babble
condition was the most difficult for both Dev and Eval, with an
EER of 9.24% for Eval, and only 1.56% for Dev. The music
condition did not appear to be present in the Eval data.

4.3. Microphone positions

There were 8 different microphone positions in the Dev data
and 11 positions in the Eval data. We selected what we thought
as the four most representative positions: closest to the speaker,
mid-distance, farthest, and fully obstructed by a wall. Different
rooms were used in Dev and Eval–room 1 for Dev enroll, room
2 for Dev test, room 3 for Eval enroll and room 4 for Eval test,
so we observed different performance between Dev and Eval
for a position with the same name. In Dev, there is small per-
formance degradation as the mic gets farther from the speaker.
However in Eval, there is huge degradation for the farthest mi-
crophone (EER multiplies by ∼ 4) and the wall microphone
(EER multiplies by ∼ 6) w.r.t. the closest mic. We assume that
this is because room 4 has larger reverberation–it may be larger
than room 2 or the walls have more reflective materials, or be-

cause the noise sources were closest to these two microphones.

4.4. Adaptation

The last four rows of Table 3 break down the results of ftdnn
by standard domain adaptation techniques. The other systems
(etdnn and resnet) follow similar trends. We found that adapt-
ing the PLDA model to Dev using the method described in
Section 3.4 achieved better results than either no adaptation or
adaptive score normalization. As a result, all of our submitted
systems used this form of adaptation only. However, we observe
that on Eval, there appears to be no clear performance trend. In
terms of Act DCF, the best performance is obtained by PLDA
adaptation plus score normalization, and achieved 0.432, while
no adaptation and PLDA adaptation both obtained 0.439.

5. Conclusions
This paper described the systems we developed for the speaker
recognition track of the VOiCES 2019 challenge, and we pre-
sented some cursory post-evaluation analysis. Our systems con-
sisted of three x-vector DNNs with PLDA backends that were
closely based on those that obtained excellent results in SRE
2018. We found that, individually, these systems achieved com-
petitive results on the VOiCES evaluation data, and were sim-
ilar to each other in performance. Our primary submission,
which was a fusion of the these three systems, provided a sig-
nificant improvement over our single-system submission alone,
although most of the gains were due to fusing only two of the
systems. Finally, we found that the evaluation set was more
challenging than the development data, as the very low error-
rates we achieved on the development set were not representa-
tive of the performance we obtained on the evaluation set. In
the future, we plan to better understand this mismatch.

6. Acknowledgements
This work was partially supported by the DARPA MATERIAL
and LORELEI programs (FA8650-17-C-9115, HR0011-15-2-
0024) and an unrestricted gift from Mobvoi Inc.

2471

7. References
[1] C. Richey, M. Barrios, Z. Armstrong, C. Bartels, H. Franco,

M. Graciarena, A. Lawson, A. Nandwana, M. K andStauffer,
J. van Hout, P. Gamble, J. Hetherly, C. Stephenson, and K. Ni,
“Voices obscured in complex environmental settings (voices) cor-
pus,” in ISCA INTERSPEECH 2018. ISCA, 2018.

[2] M. K. Nandwana, J. Van Hout, M. McLaren, C. Richey, and
M. Lawson, A. Barrios, “The VOiCES from a distance challenge
2019 evaluation plan,” 2019, arXiv:1902.10828.

[3] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: an asr corpus based on public domain audio books,”
in 2015 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2015, pp. 5206–5210.

[4] D. Snyder, P. Ghahremani, D. Povey, D. Garcia-Romero,
Y. Carmiel, and S. Khudanpur, “Deep neural network-based
speaker embeddings for end-to-end speaker verification,” in 2016
IEEE Spoken Language Technology Workshop (SLT). IEEE,
2016, pp. 165–170.

[5] D. Snyder, D. Garcia-Romero, D. Povey, and S. Khudan-
pur, “Deep Neural Network Embeddings for Text-Independent
Speaker Verification,” in Proceedings of the 18th Annual Confer-
ence of the International Speech Communication Association, IN-
TERSPEECH 2017. Stockholm, Sweden: ISCA, aug 2017, pp.
999–1003.

[6] A. Nagrani, J. S. Chung, and A. Zisserman, “Voxceleb: a large-
scale speaker identification dataset,” in Interspeech, 2017.

[7] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudan-
pur, “X-Vectors : Robust DNN Embeddings for Speaker Recog-
nition,” in Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing, ICASSP 2018. Alberta,
Canada: IEEE, apr 2018, pp. 5329–5333.

[8] P. Kenny, “Notes on modeling i-vectors,” CRIM, Montreal, Que-
bec, Canada, Tech. Rep., 2010.

[9] K. Okabe, T. Koshinaka, and K. Shinoda, “Attentive statistics
pooling for deep speaker embedding,” Proc. Interspeech 2018, pp.
2252–2256, 2018.

[10] Y. Zhu, T. Ko, D. Snyder, B. Mak, and D. Povey, “Self-attentive
speaker embeddings for text-independent speaker verification,”
Proc. Interspeech 2018, pp. 3573–3577, 2018.

[11] W. Cai, Z. Cai, X. Zhang, X. Wang, and M. Li, “A Novel Learn-
able Dictionary Encoding Layer for End-to-End Language Identi-
fication,” in 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). Calgary, Canada:
IEEE, apr 2018, pp. 5189–5193.

[12] W. Cai, J. Chen, and M. Li, “Exploring the Encoding Layer and
Loss Function in End-to-End Speaker and Language Recognition
System,” in Odyssey 2018 The Speaker and Language Recogni-
tion Workshop. Les Sables d’Olonne, France: ISCA, jun 2018,
pp. 74–81.

[13] S. Ioffe, “Probabilistic linear discriminant analysis,” in Proceed-
ings of the 9th European Conference on Computer Vision, ECCV
2006, ser. LNCS, A. Leonardis, H. Bischof, and A. Pinz, Eds.,
vol. 3954. Graz, Austria: Springer-Verlag Berlin, Heidelberg,
may 2006, pp. 531–542.

[14] S. J. Prince and J. H. Elder, “Probabilistic Linear Discriminant
Analysis for Inferences About Identity,” in Proceedings of the
IEEE International Conference on Computer Vision, ICCV 2007.
Rio de Janeiro, Brazil: IEEE, oct 2007, pp. 1–8.

[15] D. Garcia-Romero and A. McCree, “Supervised domain adapta-
tion for i-vector based speaker recognition,” in 2014 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2014, pp. 4047–4051.

[16] J. S. Chung, A. Nagrani, and A. Zisserman, “Voxceleb2: Deep
speaker recognition,” in INTERSPEECH, 2018.

[17] M. McLaren, L. Ferrer, D. Castan, and A. Lawson, “The 2016
speakers in the wild speaker recognition evaluation.” in Inter-
speech, 2016, pp. 823–827.

[18] L. D. Consortium, “Mixer 6 corpus specification v4.1,,” 2013.

[19] D. Snyder, G. Chen, and D. Povey, “MUSAN: A Music, Speech,
and Noise Corpus,” 2015, arXiv:1510.08484v1.

[20] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz,
J. Silovsky, G. Stemmer, and K. Vesely, “The Kaldi speech
recognition toolkit,” in Proceedings of the IEEE Workshop on
Automatic Speech Recognition and Understanding, ASRU2011.
Waikoloa, HI, USA: IEEE, dec 2011, pp. 1–4.

[21] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, A. McCree, and
S. Khudanpur, “Speaker recognition for multi-speaker conversa-
tions using x-vectors,” in Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing, ICASSP
2019. IEEE, 2019.

[22] D. Povey, G. Cheng, Y. Wang, K. Li, H. Xu, M. Yarmohamadi,
and S. Khudanpur, “Semi-Orthogonal Low-Rank Matrix Factor-
ization for Deep Neural Networks,” in Proceedings of the 19th
Annual Conference of the International Speech Communication
Association, INTERSPEECH 2018, Hyderabad, India, sep 2018.

[23] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning
for Image Recognition,” dec 2015.

[24] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song, “SphereFace:
Deep Hypersphere Embedding for Face Recognition,” in 2017
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), vol. 2017-Janua. IEEE, jul 2017, pp. 6738–6746.

[25] Z. Huang, S. Wang, and K. Yu, “Angular Softmax for Short-
Duration Text-independent Speaker Verification,” in Interspeech
2018. Hyderabad, India: ISCA, sep 2018, pp. 3623–3627.

[26] N. Brummer and E. De Villiers, “The BOSARIS Toolkit: The-
ory, Algorithms and Code for Surviving the New DCF,” in NIST
SRE11 Speaker Recognition Workshop, Atlanta, Georgia, USA,
dec 2011, pp. 1–23.

2472

