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ABSTRACT

We explore two adaptation approaches of deep Transformer based
neural language models (LMs) for automatic speech recognition.
The first approach is a pretrain-finetune framework, where we first
pretrain a Transformer LM on a large-scale text corpus from scratch
and then adapt it to relatively small target domains via finetuning.
The second approach is a mixer of dynamically weighted models that
are separately trained on source and target domains, aiming to im-
prove simple linear interpolation with dynamic weighting. We com-
pare the two approaches with three baselines – without adaptation,
merging data, and simple interpolation – on Switchboard (SWBD)
and Wall Street Journal (WSJ). Experiments show that the mixer
model generally performs better than baselines and finetuning. Com-
pared with no adaptation, finetuning and the mixer approach obtain
up to relative 11.5% and 14.1% WER reductions on SWBD, respec-
tively. The mixer model also outperforms linear interpolation and
merging data. On WSJ, the mixer approach achieves a new state-of-
the-art WER result.

Index Terms— neural language model, language model adapta-
tion, Transformer, linear interpolation, automatic speech recognition

1. INTRODUCTION

Neural language models (LMs) are an important module in auto-
matic speech recognition (ASR) [1, 2]. They perform better in mod-
eling long range dependency than n-gram language models [3], and
are mainly used in the second-pass decoding stage via N-best or
lattice rescoring [4]. Recurrent neural networks (RNNs) [1], espe-
cially LSTMs [5], are the most commonly used architecture. Recent
study shows that well configured Transformer-based LMs outper-
form LSTM-based ones for rescoring on Librispeech [6]. Thus, in
this study, we use Transformer architecture on large-scale corpora.

Most neural LMs in ASR systems are built from transcriptions
or text corpora from similar domains. Lack of adequate in-domain
data negatively affects the performance of neural LMs. Thus, how to
improve the performance of a neural LM for a relatively small target
corpus by effectively leveraging out-of-domain large-scale corpora
is an important research topic. Mismatch between source and target
domains makes such adaptation challenging.

In this work, we empirically explore two adaptation approaches
for Transformer LMs. The first is a two-stage training approach in-
cluding pretraining and finetuning. We pretrain a Transformer LM
on the source domain with large-scale text and then adapt it to the tar-
get domain via weight transfer (i.e., finetuning parameters). Strate-
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gies of finetuning mainly depend on two factors – the size of the tar-
get domain and its similarity to the source domain. Our discussion is
under the scenario that the target domain is similar to the source one,
since when domains are too different, any adaptation technique can
hardly help. We experiment with two weight transfer methods: (i)
finetuning all parameters of a pretrained model, and (ii) only adapt-
ing the top fully connected (FC) feed forward layers, keeping other
parameters freezed in the pretrained model.

Though finetuning is a common adaptation approach, to fine-
tune large pretrained models with limited adaptation data tends to
suffer from overfitting. Model interpolation is a simple and robust
alternative, which has been widely used as an adaptation method for
statistical LMs in ASR [7, 8]. In this work, we apply model interpo-
lation to neural LMs, and propose a mixer model that dynamically
fuses separately trained models based on local context, aiming at
improving simple linear interpolation which uses fixed combination
weights globally. The mixer model consists of both source and target
models, and a mixer layer to dynamically predict fusion weights of
hidden states from each model at each time step.

Our mixer approach is mainly inspired by similar work from Irie
et al. [9] for building a robust RNNLM on multi domains and Das et
al. [10] for building a universal acoustic modeling. However, the for-
mer one uses word embeddings as inputs to the mixer layer, which
is not context-aware. And without comparison with linear interpola-
tion makes it is unclear about the gain from dynamic weighting. In
this study, we compare the proposed approaches with baseline meth-
ods including data merging and linear interpolation. Through this
work we hope to provide some practical guidance on which neural
LM adaptation method to choose for ASR.

2. RELATED WORK

In this section, we briefly review previous work on adaptation ap-
proaches for neural LMs in ASR systems. Most previous studies
have focused on LSTM based LMs. There are mainly two cate-
gories depending on what a model adapts to. In the first category,
a model adapts to recent history. This is inspired by cache mod-
els in n-gram LMs [11, 12]. There have been studies for RNNLMs
to adapt to recent history [13, 14] under the fast margin adaptation
framework [15].

In the second category, a model adapts to a specific topic, style,
or domain. The strategy can be feature-based or model-based. For
feature-based method, Mikolov et al. [16] used context-aware vec-
tors as extra input features to RNNLMs to adapt long span topic
information. Similarly, Chen et al. [17] explored topic modeling ap-
proaches to extract topic features as additional inputs to RNNLMs
for genre and topic adaptation in a multi-genre broadcast transcrip-
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tion task. For model based approach, Gangireddy et al. [18] in-
vestigated two domain adaptation approaches: i) scaling forward-
propagated hidden activations and ii) directly finetuning the whole
RNNLM in a broadcast transcription task. Ma et al. [19] explored
three finetuning strategies for LSTM based LMs.

3. METHODS

3.1. Transformer Decoder as Language Model

The original Transformer model [20] contains an encoder and a de-
coder for neural machine translation. For the task of language mod-
eling, we do not need the encoder component. Specifically, we adopt
the generative pretraining Transformer (GPT) [21] as model archi-
tecture in this work.

The GPT model is a stack of 12 Transformer decoder blocks
and each block consists of a masked multi-head self-attention mod-
ule and a feed forward module, as shown in “Source Model” in Fig-
ure 1. The mask is used to prevent the model from using any future
context, which is essential for auto-regressive LMs. Positional em-
beddings [20] are added on inputs.

Let us denote the input of the l-th Transformer block at time t

as h(l−1)
t , which is the output from (l-1)-th Transformer block. The

l-th self-attention module transforms it as follows:
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where Q, K, V are projection matrices of l-th self-attention module
on the input for obtaining queries, keys, and values, and s

(l)
t is the

sequence of cached key-value pairs up to time t. SELFATTENTION
denotes the masked multi-head self-attention module. Ws and bs
are parameters of the output projection layer applied to the output
of the multi-head self-attention module. LAYERNORM denotes the
layer normalization operation [22]. We follow the original paper [20]
to add layer normalization after each module (as shown in Figure 1),
instead of before (as this paper [6] does).

The normalized output c(l)t is fed into the feed forward module
as below:
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The feed forward module consists of two FC layers with the Gaus-
sian error linear unit [23] as activation function, followed by a resid-
ual connection with layer normalization. We refer to the output h(L)

t

of the last L-th Transformer block as “hidden states” in the following
paper.

3.2. Approach 1: Finetune GPT

Effectively leveraging large amount of raw text is critical to re-
duce the dependency on labeled data in natural language processing
(NLP). Evidence suggests that unsupervised generative pretraining
on a large amount of generic data can improve performance on a
range of NLP tasks [21, 24, 25, 26]. A commonly used two-stage
training approach [21] combines pretraining and finetuning. First,
a neural model is trained on the unlabeled raw text via a language
modeling objective. The parameters of the model are then adapted
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Fig. 1: Mixer model of a source GPT, a target Transformer or LSTM
model, and a mixer layer with hidden states as inputs.

to a target task with labels using the corresponding task-specific ob-
jective. In this work, since our end task is still language modeling,
we do not need to change the objective function in the finetuning
stage.

We experiment with two finetuning strategies in this work. The
first one is to tune all parameters of the pretrained model on the tar-
get (i.e. adaptation) data. However, when the target-domain data is
small-scale comparing to the pretraining data, this approach could
make the model suffer from overfitting. Thus, in the second strat-
egy, we freeze all the parameters except for the last FC feed forward
layer in the last Transformer block of the pretrained model, and only
finetune this layer. Since the pretrained model has a feed forward
module in each Transformer block, we do not add an extra FC layer
as this paper [19] does. For both finetuning methods, we use a learn-
ing rate 10 times smaller than in pretraining stage.

3.3. Approach 2: The Mixer Model with Dynamic Weighting

Intuitively, each source and target model may cover partial data dis-
tributions of a test corpus. The source model helps when it contains
useful information that the target model does not have. Thus, we can
view the adaptation problem as a model interpolation task to prop-
erly integrate the useful information from the source model with the
target model. Simple linear interpolation is widely used for model
combination or adaptation for n-gram LMs in ASR [7, 8]. Although
it is simple and robust, it is not optimal in theory since the globally
fixed interpolation weights are not aware of local context, except for
extreme scenarios (for example, one model always outperforms the
other). Dynamically integrating models with fine-grained weights
could outperform simple linear interpolation.

To verify the potential of dynamic weighting, we compute the
oracle perplexity by choosing the model that gives the best proba-
bility at each time step. Comparing with simple linear interpolation,
we observed a significant perplexity drop (The “Oracle” result in Ta-
ble 3). This indicates there is sufficient room to improve the baseline.

We explore a mixer model approach to achieve dynamic weight-
ing motivated by the oracle experiments. The mixer model consists
of both source and target models, and a mixer layer that predicts the
fusion weights of hidden states from each model at each time step,
as shown in Figure 1.
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The mixer layer is a 1-layer multi-head self-attention module,
followed by a feed forward module and a softmax output layer. Let
us assume we have K separately trained models, and denote the hid-
den state from the last layer L of each model as hL

i , where i is in
range [1, K]. For simplicity, we remove the subscript for time in
notations here. The concatenated hidden states are first projected to
a common space by a linear projection layer and then fed into the
self-attention module. The mixer layer’s output a, a K-dimensional
vector, is the probability distribution of weights on these states. The
weight vector a, mixed hidden state hmix, and final output y are writ-
ten as follows:

a = MIXER(Wconcat(hL
1 , ..., h

L
K) + b) (7)

hmix =

K∑
i=1

aih
L
i (8)

y = Softmax(Wohmix + bo) (9)

4. EXPERIMENTS

4.1. Datasets

We use two large text datasets to train the source GPT models. The
first is mainly a corpus of public Facebook posts and comments. It
contains around 110M English sentences. We also include the text
of Fisher corpus into it since it is similar to one of the target domain.
We denote the merged corpus as “Source1” in all tables. The sec-
ond corpus is an English subset (10%) of the Common Crawl News
(CCNews) [27], a news corpus contains articles published world-
wide between September 2016 and February 2019. The subset we
use contains 100M sentences and 2.7 billion words.

We evaluate the adaptation methods on three target datasets in-
cluding two speech corpora – Switchboard (SWBD) and Wall Street
Journal (WSJ), and one text corpus – Wikitext-103 (Wiki103).
For SWBD, we report results on the full HUB5’00 evaluation set
(“Eval’00 (all)”), its “SWBD” subset (“Eval’00 (swb)”), and the
RT03 test set (LDC2007S10). For WSJ, we evaluate approaches
on the eval92 and dev93 test sets. We use two subsets of Wiki103
training text for analysis. One contains the first 2.5M sentences
(“Wiki103-Large”) and the other contains the first 0.25M sentences
(“Wiki103-Small”). We use the standard dev and test sets from
Wiki103. Table 1 shows a summary of the datasets.

Table 1: Data Information.

Domain Corpus Audio (hours) Text (#sents)

Source
Posts + Comments - 110M
Fisher* - 2.2M
CCNews subset - 100M

Target
SWBD 260 0.26M
WSJ ∼ 80 1.6M
Wiki103 subsets - 2.5M; 0.25M

* We only use text of Fisher dataset in this study.

4.2. Setups

We use Kaldi [28] for acoustic model training, decoding, and N-
best rescoring. Lattice-free maximum mutual information (LF-
MMI) [29] objective with the factorized time-delay neural networks
(TDNN-F) [30] are used for acoustic modeling on SWBD and WSJ.

We use Fairseq1 to implement and train neural LMs. All neu-
1https://github.com/pytorch/fairseq

ral LMs in our experiments are on subword level. Table 2 presents
model details. Since SWBD and Wiki103-Small are relatively small,
we use a 2-layer LSTM instead of Transformer. For the rest corpora,
the LMs are GPTs. We use 1-layer self-attention in the mixer layer in
all experiments as we do not observe further performance improve-
ment with more layers. The multi-head self-attention module in the
mixer layer contains 4 heads and 768 hidden nodes.

Since the neural LMs are on subword level, for N-best rescoring,
we need to convert word level hypotheses from first pass decoding
into subword sequences. We then score them with our neural models
and use these scores in the N-best rescoring script in Kaldi.

We use 16 Nvidia V100 GPUs to train GPTs. We use Adam opti-
mizer and early stopping. The dropout rates are 0.1 and 0.3 for GPTs
and LSTMs, respectively. We use byte pair encoding (BPE) [31] to
get subword units. There are 25416 BPE tokens on Facebook posts
and comments, and 62760 BPE tokens on the CCNews subset. Note
that we use “Source1” as the source data for SWBD and WSJ, and
the CCNews subset as the source data for Wiki103.

Table 2: Model Details of Neural LMs.

Corpus Model Layers FC Dim* Heads Output

Source1,WSJ GPT 12 3072 12 25K
SWBD LSTM 2 768 - 25K

CCNews,Wiki103-Large GPT 12 3072 12 62K
Wiki103-Small LSTM 2 768 - 62K

* The hidden dimension of fully connected feed forward layer.

As for training procedure, we first pretrain source and target neu-
ral LMs separately. We then initialize the parameters of the final
output layer in the mixer model in Figure 1 with the source model’s
corresponding ones, and train the mixer model on training data of the
target corpora, with parameters of source and target models freezed.
For SWBD, we also include Fisher data to train the mixer since their
domains are similar.

4.3. Perplexities and WERs

The BPE level perplexities on SWBD dev and test sets are shown in
Table 3. Here “Oracle” means the best results that dynamic inter-
polation can achieve in theory. “w/o adaptation” means the LSTM
model trained only on SWBD. “Merging data” means training a GPT
model on merged source1 and SWBD datasets.

Note that, “Pretrain + Finetune” in all tables means finetuning all
parameters of the pretrained model since we find that it outperforms
only tuning the top FC layer. This is out of our expectation since
SWBD is a relatively small corpus. We think the reason can be the
pretrained GPT model is already well regularized (e.g. LayerNorm
and dropout). We also observe that the mixer approach obtains best
perplexity on the test set “Eval’00 (all)”.

We then conduct N-best rescoring experiments on SWBD, and
report WERs in Table 4. We set N = 20 for all experiments. We
list Kaldi RNNLM’s results for reference. Since Kaldi RNNLM is
trained on both SWBD and Fisher corpora, the WERs are not di-
rectly comparable with “LSTM (SWBD): w/o adaptation” in Ta-
ble 4. Compared with merging data and linear interpolation, both
proposed approaches perform better, and the mixer model slightly
outperforms finetuning.

We then experiment with WSJ corpus, and report N-best
rescored WERs by differently adapted neural LMs, as well as
Kaldi RNNLM’s reference results in Table 5. The “GPT (WSJ): w/o
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Table 3: Perplexities of neural LMs on SWBD.

Models Dev Eval’00 (all)

Oracle (for Mixer) 31.0 46.3

GPT (source1) 55.9 79.4
LSTM (SWBD): w/o adaptation 61.1 114.8
Baseline 1: Merging data 50.9 78.0
Baseline 2: Interpolation 43.2 66.8

Pretrain + Finetune 34.6 67.1
Mixer 38.5 63.5

Table 4: N-best rescored WERs by neural LMs on SWBD.

Models Eval’00(all) Eval’00(swb) RT03

Kaldi RNNLM 11.5 7.8 13.8

GPT (source1) 10.7 7.1 13.2
LSTM (SWBD): w/o adaptation 11.8 7.8 14.5
Baseline 1: Merging data 10.6 7.1 13.1
Baseline 2: Interpolation 10.6 7.1 13.3

Pretrain + Finetune 10.5 6.9 13.0
Mixer 10.4 6.7 12.7

adaptation” means the target GPT model trained on WSJ. It outper-
forms Kaldi RNNLM trained on the same corpus, which indicates
the superiority of Transformer-based LM than LSTM on relatively
large corpus.

The “3-Mixer” in Table 5 means we include the GPT model
trained on merged source and target data as an extra source model.
In the “3-Mixer” setting, the extra source model is used to initialize
the final output layer in the mixer model in Figure 1. We find that
this initialization performs better than using the one trained only on
source data. As expected, “3-Mixer” outperforms other methods on
Eval92 and achieves a new state-of-the-art WER on WSJ.

5. ANALYSIS AND DISCUSSIONS

5.1. Mixer Layer’s input: Word Embeddings v.s. Hidden States

Intuitively, hidden states contain more information than word em-
beddings, and thus could potentially give better performance as in-
puts of the mixer layer. We conduct an experiment with the “3-
Mixer” setting described in Section 4.3 on WSJ. And the N-best
rescored WERs in Table 6 verify that hidden states indeed slightly
outperform word embeddings.

In this study, the model integration is performed on hidden state
level, while a more direct way is to simply combine the two models
on probability level. We try to interpolate the output probabilities of
the source and target models, keeping the mixer layer the same. But
results on SWBD show that mixing on hidden state level performs
better.

5.2. Effect of the Size of Target Data

In practice, finetuning a pretrained model is relatively easier than the
mixer approach, and so insights of choosing which one can be useful.
We hypothesize that when the size of the target corpus is relatively
small, the gain of the mixer approach could be larger, since the over-
fitting issue can be more severe with less data for finetuning.

Table 5: N-best rescored WERs by neural LMs on WSJ.

Models Dev93 Eval92

Kaldi RNNLM 2.66 1.52

GPT (source1) 3.52 1.58
GPT (WSJ): w/o adaptation 2.62 1.40
Baseline 1: Merging data 2.78 1.33
Baseline 2: Interpolation 2.50 1.33

Pretrain + Finetune 2.64 1.17
2-Mixer 2.54 1.24
3-Mixer 2.53 1.10

Table 6: WERs by a mixer model with different inputs on WSJ.

Model Inputs Dev93 Eval92

3-Mixer Word Embeddings 2.54 1.12
Hiddens States 2.53 1.10

We conduct a perplexity evaluation on the Wiki103-Large and
Wiki103-Small datasets. The source model is trained on the CC-
News subset corpus. Perplexity results from the finetuned model
and the mixer model are shown in Table 7. We observe larger gains
by the mixer approach on Wiki103-Small. This observation supports
our hypothesis that the mixer model potentially perform better than
finetuning on relatively small corpus.

Table 7: Perplexities of neural LMs on Wikitext-103.

Target Datasets Approach Dev Test

Wiki103-Large Pretrain + Finetune 27.4 27.7
Mixer 26.9 (-1.8%) 27.3 (-1.4%)

Wiki103-Small Pretrain + Finetune 39.7 39.7
Mixer 37.7 (-5.0%) 37.8 (-4.8%)

6. CONCLUSIONS

In this work, we mainly explore two adaptation approaches for deep
Transformer based neural LMs used in ASR systems, and compare
them with several baselines. The first approach is to finetune a pre-
trained GPT model. The second one is a mixer approach to dynami-
cally integrate source and target models with context-aware weights.
In general, we observe that the two approaches perform better than
baselines under most scenarios in our experiments. In particular, we
achieve a state-of-the-art WER result via the mixer adaptation ap-
proach on WSJ. Finally, we verify that hidden states outperforms
word embeddings as inputs of the mixer model, and the mixer ap-
proach is more effective than finetuning when the target-domain data
is small-scale.
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