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ABSTRACT

Keyword search (KWS) systems are commonly built on top of
existing automatic speech recognition (ASR) systems. How-
ever, end-to-end (E2E) ASR models are not naturally equipped
with word-level timing information or confidence. Existing
methods for re-purposing E2E ASR systems for KWS are
largely heuristic or model-specific. In this paper, we describe
a general KWS pipeline, applicable to any ASR model that
generates N-best lists. We extract timing information using
either external word-aligners, or time-preserving weighted
finite-state transducer-based decoders. We show that our
light-weight, ASR-agnostic approach for confidence estima-
tion based on /V-best lists outperforms other commonly used
heuristics, such as using the decoder’s softmax probability,
and even a more complicated dedicated confidence estimation
model (CEM). Finally, we compare our performance to hybrid
ASR models, extensively evaluating the impact of word-level
timing, confidence, and recall on KWS performance. Our
KWS pipeline is available online!, suitable for evaluating the
aforementioned ASR components as downstream tasks.

Index Terms— speech recognition, end-to-end, keyword
search, information retrieval, confidence, forced alignment

1. INTRODUCTION

Keyword search (KWS), also called spoken term detection
(STD) [1], enables search of large spoken corpora such as lec-
tures, meeting recordings, call center conversations or videos
on the web. A KWS system proposes candidate matches([2]
for user-specified search terms in an audio corpus.

Typical KWS systems are built on top of automatic speech
recognition (ASR) systems [3, 4, 5, 6, 7, 8], which decode the
input speech into possible word-sequence hypotheses before
searching. There is also work that explores the possibility of
ASR-free KWS [9, 10, 11]. However, in this work, we focus
on ASR-based KWS, as ASR-based KWS generally outper-
forms ASR-free KWS. Specifically, as recent progress in end-
to-end (E2E) ASR [12] has generally outpaced research into
their use in KWS systems, we focus on building KWS system
from E2E ASR. KWS can also help diagnosing ASR perfor-
mance beyond the commonly used word error rate (WER).

'https://github.com/huangruizhe/kws

To enable good KWS systems, accurate estimation of tim-
ing and confidence scores for words is required. A high recall
of words in the ASR N-best or lattice outputs is also impor-
tant. However, unlike hybrid ASR, which is decoded using
methods based on the weighted finite state transducer (WFST)
framework and provides a rich lattice where timing informa-
tion and confidence scores can be easily obtained, E2E ASR
results do not naturally come with timing or confidence per
word. This work will address and evaluate the impact of these
challenges on KWS performance.

There has been previous research on KWS based on E2E
ASR. People have used either lattices [13, 4] or N-best lists [5,
6, 8] as the underlying ASR outputs. Various methods have
been proposed to improve the accuracy of timing and confi-
dence. For example, [5, 6, 8] fine-tune the ASR systems in
terms of time alignment or confidence scores specifically for
KWS. Our work conducts KWS on N-best lists output by E2E
ASR, similar to [6, 8]. We explore additional options to get
timing and confidence. More importantly, we aim to provide a
general, out-of-the-box KWS pipeline without any fine-tuning,
which is applicable to any ASR model capable of generating
N-best lists. The timing information (e.g., [14, 15]) and con-
fidence scores (e.g., [16, 17]) extracted by any external model
can be easily plugged-in and evaluated. This facilitates evalu-
ation of competing ASR systems with similar WERs in con-
trolled experiments. On this test-bed, we conduct extensive
intrinsic and extrinsic evaluations of the quality of the timing
and confidence information obtained by different methods, yet
it turns out that the bottleneck for KWS based on E2E ASR is
its lower word recall.

2. KWS SYSTEM OVERVIEW

Our system takes as inputs the N-best lists, timing informa-
tion and confidence scores (detailed in subsequent sections)
from ASR. It then builds efficient indices on top of the inputs.
During search time, for each query term, we return a putative
hitlist of (utterance_id, start_time, end_time, confidence_score).

More specifically, we first greedily align each ASR hypoth-
esis, by edit distance, to make a compact WFST representation
— confusion network [18], also called “sausage”. On top of this,
unlike previous work [5, 6, 8], we use timed factor transducer
(TFT) [19] as inverted index, following its successful applica-
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tion to conventional KWS for hybrid ASR [3]. TFT naturally
supports any query expressed as WFST, e.g., phrasal and wild-
card KWS. Caution has to be taken when constructing TFT
over confusion networks, as TFT are originally proposed for
e-free lattices, whereas in our case, the confusion network can
contain € arcs due to aligning hypothesis of different lengths.
As a workaround, we explicitly treat € as a non-e¢ normal sym-
bol and translate between equivalent sequences containing .

3. EXTRACTING TIME ALIGNMENTS

We compare three ways to extract time alignments for the 1-
best hypothesis. Based on the 1-best hypothesis’s alignment,
the sausage timing is distributed proportionately.

» HMM-GMM aligner trained on ASR training data:
If the ASR training data is available, we can train an HMM-
GMM model with, e.g., Kaldi toolkit [20], to perform forced
alignment of the hypotheses. This method is considered the
most accurate, and will be used as the baseline.

* Universal external aligner: If the language of interest
is supported by an off-the-shelf universal external aligner, e.g.,
Montreal Forced Aligner (MFA) [21], we can use it to align
the E2E ASR results with time. Note, MFA is also a HMM-
GMM system, but trained on some external data different from
the ASR training data. Thus, MFA can potentially suffer from
data domain mismatch.

*  WEFST-based decoding for CTC posteriors. Many
E2E ASR systems are based on either connectionist tempo-
ral classification (CTC) [22], RNN transducer (RNN-T) [23]
or joint CTC/Attention architecture [24]. These systems can
adopt WFST-based decoding [25, 26] as in hybrid ASR. More
specifically, E2E ASR systems first generate frame-by-frame
posteriors of the whole utterance. Then, the posteriors are
composed with a WFST decoding graph to search for the best
token sequence. The decoding graph (“TLG graph”) incor-
porates the topology (T) mapping CTC alignments to tokens,
lexicons (L) and language models (G). The composed graph is
then determinized and minimized to improve efficiency. Dur-
ing decoding, the decoder will try to find the best path for the
utterance through the decoding graph. The position of the
input or output labels on the path can be seen as their timing.

4. ESTIMATING SAUSAGE ARC CONFIDENCE

We need a score for each arc in the sausage. More specifically,
for each arc with label w in the 7’th bin of the confusion net-
work for utterance x, we want a confidence score p(w|x; i) to
reflect how likely the word (or the arc) is correct. The question
is how to compute p(w|x; ).

* Aggregation of sequence-level posterior probability
[27]. In E2E ASR, each hypothesized word sequence usually
comes with a score, interpreted as its total log posterior proba-
bility. We can normalize the scores to sum to one among the
N-best, which can be regarded as the proper posterior proba-
bility for each hypothesis. Specifically, for each hypothesis A

with score s; in the N-best list, let p(h;|x) = softmax(s;/7),
where 7 is a temperature scaling factor. When 7 — oo, the
distribution becomes uniform; when 7 — 0, the 1-best hy-
pothesis gets all probability mass.

¢ Average of the decoder’s softmax probability. Al-
ternatively, we follow the approach in [28, 6], which is to
obtain word-level posteriors by aggregating token-level poste-
riors output by the softmax layer in the decoder. We used max
as the aggregation function. Then, the scores for the sausage
arcs gone through by multiple hypotheses are obtained by fur-
ther averaging the word posteriors from different hypotheses.
Note that this method does not guarantee that the probability
of each sausage bin sums to one.

e Auxiliary confidence estimation model. Following
[16], we train a dedicated confidence estimation model on top
of the ASR model. In fact, the model in [16] does not need
to access the ASR model. It only takes the N-best lists as
well as several handy scores as input. More specifically, we
first merge the N-best list into a sausage. Then, each sausage
arc has the following features: pre-trained word embeddings
(e.g., derived from fast Text [29]), duration, the confidence
scores taken from other methods such as the above two. Then
the sausage is fed into a bidirectional lattice RNN network,
which outputs a score between 0 and 1 for each arc.

5. EXPERIMENTS AND ANALYSIS

We experiment on English conversational telephone speech.
For ASR training, Switchboard corpus and additional Fisher
text of 23M words are used. These two data sets consist
of conversations between strangers about assigned topics.
For KWS development and evaluation, we use two datasets.
One is STD2006 Dev/Eval, for benchmarking with other
KWS systems in 2006 NIST STD evaluation [30]. The other
is CALLHOME English, containing spontaneous conversa-
tions between friends and families, a mismatched scenario cf.
Switchboard or Fisher. Dataset info can be found in Table 1.

Dataset #Hours WER %

Hybrid E2E K2
Syitchboard | 260h/4h | -/114 | -/11.0 | -/110
e, | 3h/3h | 114/13.6 | 108/12.0 | 11.0/12.4
COLMOME | 31/1.5h | 20.0/18.7 | 20.2/18.8 | 20.3/18.8

Table 1. Dataset statistics and word error rates of ASR models

To reflect practical deployment scenarios, we use off-
the-shelf ASR models without additional KWS application-
specific fine-tuning. ASR information is in Table 1. We use
hybrid HMM-DNN models from Kaldi? [20] and E2E models
from ESPnet® [31]. Decoders for all systems are configured
to achieve similar oracle WERs on 50-best lists (Section 5.4).

thtps ://github.com/kaldi-asr/kaldi/tree/master/egs/swbd
3https ://github.com/espnet/espnet/tree/master/egs2/swbd/asrl
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KWS system STD2006 Eval CALLHOME Eval
Hybrid, Lattice | 0.8155/0.9345 0.8586 / 0.9382
Hybrid, 50-best | 0.8389/0.9247 0.8534/0.9136

+ E2E, 50-best 0.8121/0.8972 0.8031 /0.8720
Fusion, 50-best | 0.8426/0.9382 0.8693 / 0.9449

Table 2. KWS performance (ATWV/STWV) on Eval sets
for different systems (A7 = 0.5s). The closer to 1.0, the
better. The best results are in bold font. The default setup for
E2E ASR-based KWS is marked with an asterisk (x), and the
underlined numbers will appear in other tables for reference.

Search terms can be words or phrases. STD2006 data
comes with lists of search terms for both Dev and Eval sets.
For CALLHOME, we choose approx. 2K words/phrases from
the reference transcription with high TF-IDF scores or point-
wise mutual information (PMI). Heuristic filters are applied
to remove phrases that do not look like proper collocations.

The overall KWS performance will be measured by actual
TWYV (ATWV) and Supremum TWV (STWYV). Detailed def-
initions can be found in NIST KWS evaluation plan*. When
computing TWYV, there is a temporal tolerance collar (Ar)
which controls the allowable distance (in seconds) between the
centers of sys/ref occurrences. The smaller A is, the stricter
time alignment is required. By default, we take Ap = 0.5 sec.

Three factors can impact KWS performance (i.e., TWV):
timing, confidence scores and word recall. We will provide
intrinsic and extrinsic evaluation for each of the factors in the
subsequent sections, after an overall KWS evaluation.

5.1. Evaluation of KWS

First, we benchmark KWS performance of hybrid and E2E
systems in Table 2. For hybrid systems, KWS can be based
on N-best lists or lattices. For E2E system, by default, we
take N = 50, use HMM-GMM aligner as in section 3, and
use aggregated sequence-level posterior probability (denoted
as POST) as confidence score (Section 4), where the best tem-
perature scaling factor 7 (0.2 ~ 0.5) is tuned from Dev data.

Note that ATWYV reflects the system’s actual performance
in operation, while STWYV is the maximum achievable ATWV
when all false alarms are not penalized. Overall, although E2E
ASR has better WER (Table 1), KWS based on hybrid ASR
(the first two rows) outperforms its E2E counterpart (3rd row)
in terms of both ATWV and STWV.

Examining the 2nd/3rd rows of Table 1, we see that the
ATWYV of E2E system falls behind hybrid system by a consid-
erable margin. However, the STWYV lags by almost the same
margin. Thus, we conjecture that the worse E2E KWS per-
formance is mainly due to its lower recall (i.e., low STWV),
rather than poor score calibration. For system fusion, we com-
bine the hitlists of the systems on row 2 and 3. It turns out to
be better than both single systems. This result agrees with [5].

5.2. Evaluation of Time Alignments

The ESPnet model does not have time stamps for its ASR

4https://WWWAnist.qov/document/kwsl6—evalplan—v04.pdf
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Fig. 1. Intrinsic evaluation of time alignments: comparing
time stamp errors (TSE, in milliseconds) of different ways to
obtain alignments for CALLHOME E2E ASR results.

outputs. Thus, following Section 3, we compare several ways
to obtain timing alignment. We use the k23 framework and
the decoders in icefall® for WFST-based decoding.

To evaluate time alignment intrinsically, we align the
sausage with the ground truth transcript by edit distance, and
measure the midpoint time stamp error (TSE, in milliseconds)
of the correct words. Results on CALLHOME are shown
in Figure 1. We present the bias-unshifted TSE distribution
for Dev set on the left, and the shifted version on Eval on
the right. In general, the time alignments obtained by all
three methods are accurate, with average TSE bias less than
12 ms on CALLHOME Eval. Among them, the alignments
obtained from the HMM-GMM aligner (tri3) trained on
ASR training data work the best, while k2-based decoder with
word-level configuration has the largest bias and variance.

On the other hand, we perform an extrinsic evaluation of
time alignment with KWS. We report TWVs with increasing
temporal tolerance A = 0.25,0.5,5.0 seconds in Table 4.
Among the four methods, aligners t ri3 and k2-token work
better for KWS across all A7’s, due to smaller bias and vari-
ance of TSE. Their ATWVs do not increase much when Ar
increases, even when Ap = 5.0s. This means time alignment
is not the bottleneck for the KWS performance. In other words,
improving the alignment performance on these datasets will
not bring further ATWYV gain.

5.3. Evaluation of Word Confidence Scores

We evaluate different confidence estimation methods de-
scribed in Section 4. For the softmax probability, we ex-
periment with acoustic model plus language model scores
(AM+LM), attention scores (ATT) and CTC scores (CTC).
Performance is measured by normalized cross entropy (NCE),
expected calibration error (ECE) and the area under precision-
recall curve (AUPR), following e.g., [16, 17] as intrinsic
evaluation. We report the metrics across all sausage arcs, just
on the 1-best hypothesis, or restricted to only the words in
the keywords list. We then report KWS results as extrinsic

5https ://github.com/k2-fsa/k2
Ohttps://github.com/k2-fsa/icefall
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Method STD2006 Eval CALLHOME Eval
NCE 1 ECE % | AUPR % 1 ATWV NCE 1 ECE % | AUPR % 1 ATWV

«POST | 0.70/-0.73/0.77 | 0.97/523/0.65 | 94.18/95.61/95.77 | 0.8121 | 0.60/-0.76/0.57 | 1.53/5.61/1.60 | 89.92/92.65/90.60 | 0.8031
AM+LM | 0.63/-0.02/0.68 | 3.93/6.51/341 | 97.30/94.09/93.46 | 0.7795 | 0.52/-0.04/0.62 | 5.28/9.41/3.54 | 89.08/96.10/92.03 | 0.7919
ATT 0.69/0.18/0.69 | 2.97/4.67/3.82 | 96.20/90.09/92.73 | 0.7796 | 0.59/021/0.67 | 451/4.92/2.12 | 83.51/94.29/88.20 | 0.7907
CTC 0.66/-0.02/0.73 | 2.27/559/1.79 | 97.41/94.43/91.81 | 0.7783 | 0.61/0.03/0.61 | 2.51/6.90/2.87 | 89.10/96.11/91.29 | 0.7853
CEM 0.77/021/0.82 | 1.67/1.83/1.61 | 96.59/96.56/9547 | 0.8079 | 0.72/0.24/0.70 | 1.33/2.51/1.53 | 91.76/94.85/92.69 | 0.7937

Table 3. Intrinsic and extrinsic evaluation of various confidence scores. For NCE, ECE or AUPR, the metrics are reported
“across all sausage arcs / on 1-best / on sausage but restricted to the words in the keywords list”. The closer to 1.0 (NCE, AUPR,
ATWYV), or to 0.0 (ECE), the better. The best number of each column is in bold. The underlined numbers can refer to Table 2.

KWS system STD2006 Eval CALLHOME Eval
* E2E, tri3 0.8040/0.8121/0.8145 | 0.7884/0.8031/0.8073
E2E, MFA 0.7700/0.7902/0.7983 | 0.7502/0.7725/0.7940
E2E, k2-token | 0.7842/0.8042/0.8067 | 0.7780/0.7854/0.7895
E2E, k2-word | 0.7153/0.7970/0.8067 | 0.7483/0.7859 /0.7883

Table 4. Extrinsic evaluation of alignments: comparing KWS
results (ATWVAT:()Q{, /ATWVAT:().f, / ATWVATZE,,(]) on
Eval sets for different ways to obtain alignments. The smaller
the gap between three numbers in each cell, the better.

evaluation for those methods accordingly.

The results are presented in Table 3. Overall, from the
column of ATWYV for each dataset, all confidence estimation
methods for E2E system provide reasonable KWS perfor-
mance. Yet, they still fall behind the hybrid baseline (row 2 of
Table 2). From our experiments, we found all intrinsic metrics,
measured either across all sausage arcs or just on the 1-best
hypothesis, do not correlate well with KWS performance.

For example, in Table 3, the confidence estimated by the
dedicated CEM module outperforms the others in NCE, ECE
and AUPR in most cases. We expected that the best KWS
results would come from the CEM method, but this was not
the case. Using the CEM resulted in good KWS performance,
but the best KWS result was obtained by the method based
on the aggregated sequence-level posteriors (POST). This is
quite surprising, as POST is the simplest to implement. The
discrepancy may be explained by two reasons, one being that
the intrinsic metrics have ignored word identities while TWV
averages per-word performance, the other being that in KWS
the ordering of the hits matters more than the absolute values
of their confidence scores. This highlights the need to evaluate
confidence scores using downstream tasks such as KWS.

5.4. Evaluation of Word Recall

In Table 5 and 6, we compare the word recall of the N-best
lists generated by different systems or decoders. We vary the
decoding beam size of E2E ASR and the size of the /N-best
lists. We measure the oracle WER and KWS performance.
We see that while each system has a similar WER (Ta-
ble 1), the hybrid system has the lowest oracle WER compar-
ing to most of others (Table 5). It also has the highest STWV.
‘While most of the time, the oracle WER correlates well with
the ATWYV, it is not always the case. We note that when the

beam size or the size N has increased to some point, ATWV
stops to increase (e.g., the last two rows of Table 5 and 6)
or even starts to decrease. This is possibly due to either the
lack of decoding diversity of E2E ASR, or the sentence-level
posterior-based confidence distribution being flattened (when
N is large and temperature scaling is applied), or there being
more noises or false alarms included into the N-best lists.

50-best STD2006 Eval CALLHOME Eval
Lists Oracle ATWV Oracle ATWV
WER % /STWV WER % /STWV
Hybrid 6.4 0.8389/0.9247 8.8 0.8534/0.9136
k2 6.9 0.7991/0.8829 9.8 0.7866/0.8627
S Beam 20 6.9 0.8021/0.8844 10.3 0.7945 /0.8567
= | xBeam 40 6.3 0.8121/0.8972 9.6 0.8031/0.8720
Beam 100 5.9 0.8097/0.8981 9.2 0.7973 / 0.8695

Table 5. Comparing oracle WER and ATWV/STWYV of vari-
ous ASR systems and various beam sizes for E2E ASR’s beam
search decoder.Lower WER or higher ATWV/STWYV is better.

Size of STD2006 Eval CALLHOME Eval
N-best | Qracle ATWV Oracle ATWV
List WER% /STWV WER% /STWV
N=1 12 0.7308 / 0.8092 18.8 0.7274/0.7598
N=10 73 0.7868 / 0.8544 119 0.7859 / 0.8382
*N=50 6.5 0.8121/0.8972 9.6 0.8031 /0.8720
N=100 5.0 0.8037/ 0.8978 8.5 0.7994 / 0.8736

Table 6. KWS performance (ATWV/STWYV) w.r.t the size of
N-best lists. Lower WER or higher ATWV/STWYV is better.

6. CONCLUSIONS

In this paper, we built KWS system based on E2E ASR’s N-
best lists. We explored different ways to recover timing and es-
timate word-level confidence scores. The KWS performance
of E2E ASR still falls behind its hybrid ASR counterpart, even
though E2E ASR has better WER. To inspect this, we provide
extensive intrinsic and extrinsic evaluations for timing, con-
fidence scores and word recall. We found that the recovered
timing is quite accurate and the estimated confidence scores
are reasonably good, while the word recall of E2E ASR may
be accountable for the KWS performance gap. Future research
may consider improving the recall of E2E ASR by methods
such as diversified beam search, multi-pass decoding, ASR
error correction or contextualized ASR that recalls rare words.
Reconciling intrinsic and extrinsic confidence metrics or re-
ducing false alarms for KWS would also be useful.
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