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ABSTRACT

In streaming automatic speech recognition (ASR), it is de-
sirable to reduce latency as much as possible while having
minimum impact on recognition accuracy. Although a few
existing methods are able to achieve this goal, they are diffi-
cult to implement due to their dependency on external align-
ments. In this paper, we propose a simple way to penalize
symbol delay in transducer model, so that we can balance the
trade-off between symbol delay and accuracy for streaming
models without external alignments. Specifically, our method
adds a small constant times (T/2 - t), where T is the number
of frames and t is the current frame, to all the non-blank log-
probabilities (after normalization) that are fed into the two
dimensional transducer recursion. For both streaming Con-
former models and unidirectional long short-term memory
(LSTM) models, experimental results show that it can sig-
nificantly reduce the symbol delay with an acceptable per-
formance degradation. Our method achieves similar delay-
accuracy trade-off to the previously published FastEmit, but
we believe our method is preferable because it has a better
justification: it is equivalent to penalizing the average symbol
delay. Our work is open-sourced and publicly available1.

Index Terms— speech recognition, delay-penalized,
transducer, streaming, low latency

1. INTRODUCTION

End-to-end models have achieved remarkable success in Au-
tomatic Speech Recognition (ASR). As a prominent exam-
ple, transducer [1–3] has gained more and more popularity
for real-time ASR system development, because it is naturally
streaming and demonstrates superior performance. However,
one limitation of transducer is that it focuses on maximiz-
ing the total log-probability over all alignments but ignores
their specific symbol delays. We hypothesize that the stream-
ing model would augment those alignments emitting symbols
later to access more contexts for better performance, leading
to higher emission latency in practical ASR application.

There are several classical methods [4–8] to reduce the
model latency by constraining the alignments between the

* stands for equal contribution
1https://github.com/k2-fsa/k2

frames and transcriptions based on the alignment references
generated from external models. Whilst this type of meth-
ods achieve good trade-offs between accuracy and latency, it
suffers from two limitations: 1) the model performance heav-
ily depends on the precision of the reference alignments; 2)
it defeats the advantage of end-to-end model training since it
requires an extra frame-level token-time alignments.

To address these limitations, another line of research [9–
11] tends to regularize the objective function in a sequence-
level manner. A prominent example is FastEmit [9], which
encourages the model to emit symbols earlier by scaling up
the derivatives of emitting non-blank tokens in backpropaga-
tion. Another work named Self alignment [11] proposes to
boost the log-probability of the alignment that is one frame
to the left of the Viterbi forced-alignment, which requires
an extra recursion with a time complexity of O(T × U) to
obtain the Viterbi forced-alignment, where T and U are the
lengths of frame sequence and token sequence respectively.
Our method, like FastEmit [9], is simple to implement, but we
are able to provide a more detailed demonstration explaining
why our method would cause alignment times to change.

In this paper, we propose a novel method of delay penal-
ization for transducer which is able to balance the trade-off
between symbol delay and accuracy for streaming models
in a simple and efficient way. Different from FastEmit [9]
that directly changes the derivatives, we modify the log-
probabilities of emitting symbols by adding a small constant
λ times the frame offsets relative to middle frame. We mathe-
matically prove that it is approximately equivalent to adding a
regularization term that aims to decrease the averaged symbol
delay on the regular transducer objective function.

The main contributions of this paper are:
• We propose the delay-penalized transducer, which penal-

izes the symbol delay without extra token-time alignment.
• We provide a detailed proof why it can encourage the low-

delay alignments and penalize the high-delay alignments.
• We show that a tunable trade-off between latency and accu-

racy can be achieved by adjusting the hyperparameter λ.

2. TRANSDUCER

Let x = {xt}T−10 be a sequence of T parameterized input
feature frames. Let y = {0 ≤ yu < V }U−10 be a sequence of
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Fig. 1. Delay penalized transducer lattice.

U transcript tokens, where V is the vocabulary size contain-
ing the blank token ∅. As shown in Figure 1, transducer [1]
learns alignments between these two sequences x and y
with different lengths. The vertical transition leaving node
(t, u) represents emitting non-blank token yu+1 with the log-
probility y(t, u), while the horizontal transition represents
emitting blank token ∅ with the log-probility ∅(t, u).

The objective function of transducer is to maximize the
total log-probability L over all alignment paths:

L = log
∑
i

exp(si), (1)

where si is the log-probability of path i summing over all
contained transitions. The forward-backward algorithm [1] is
usually employed to calculate L in an efficient manner. Let
α(t, u) be the log-probability at node (t, u), which represents
emitting tokens y0...u after seeing features x0...t. Then α(t, u)
could be calculated recursively as:

α(t, u) = LogAdd(α(t, u− 1) + y(t, u− 1),

α(t− 1, u) +∅(t− 1, u)),
(2)

where LogAdd is defined as:

LogAdd(a, b) = log (ea + eb). (3)

Herein, α(0, 0) is initialized as 0. The total log-probability of
over all alignments path L is:

L = α(T − 1, U) +∅(T − 1, U). (4)

One limitation of transducer is that it is optimized to
maximize the total log-probability L over all alignments,
regardless of their respective symbol delays. As shown
in Figure 1, the blue alignment emitting symbols later has
a higher delay compared with the red alignment. Unlike
non-streaming model that could access full contexts in an
utterance, the streaming model tends to concentrate on those
alignments emitting symbols later, such as the blue alignment
in Figure 1, thus to access more future contexts for a better
recognition performance. The blue line in Figure 2 presents
the mean alignment delay of the streaming Conformer, which
constantly increase as the training goes on.
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Fig. 2. Mean alignment delay of streaming model during
training.

3. DELAY-PENALIZED TRANSDUCER

To penalize symbol delay, we (conceptually) add an extra
term in the loss function:

Laug = L+ Ldelay. (5)

Herein, Ldelay represents the scaled weighted average delay
score over all alignments, which is formulated as:

Ldelay = λ
∑
i

diwi, (6)

where di is the delay score of alignment i, λ is a scaling
hyper-parameter, and wi is the path weight:

wi =
∂L
∂si

=
exp (si)∑
i exp (si)

. (7)

Herein, the sum of weight wi over all alignments is 1. We can
get the derivatives of Laug with respect to si as:

∂Laug

∂si
=
∂L
∂si

+
∂Ldelay

∂si
(8)

From (6) and (7), we can get:

∂Ldelay

∂si
= λ

(
di exp (si)∑

i exp (si)
− di(exp (si))

2

(
∑

i exp (si))
2

)
, (9)

which can be rearranged as:

∂Ldelay

∂si
= λ

(di − davg) exp (si)∑
i exp (si)

, (10)

where davg is:
davg =

∑
i

diwi. (11)

From (7), (8) and (10) we can get:

∂Laug

∂si
=

(1 + λ(di − davg)) exp (si)∑
i exp (si)

. (12)

For a small λ, 1+λ(di− davg) is close to exp (λ(di − davg)),
we can approximate (12) as:

∂Laug

∂si
≈

exp (λ(di − davg) + si)∑
i exp (si)

. (13)



According to (10) and (11), the sum of derivative ∂Ldelay

∂si
over

all alignments is 0. By plugging in ∂L
∂si

from (7), we can get:∑
i

∂Laug

∂si
=
∑
i

∂L
∂si

+
∑
i

∂Ldelay

∂si
= 1. (14)

Then we can equivalently normalize (13) as:

∂Laug

∂si
≈

exp (λ(di − davg) + si)∑
i exp (λ(di − davg) + si)

. (15)

without changing its numerical value (for small λ). There
is no difference between (13) and (15) for a small λ; in any
case the change is equivalent to multiplying the loss function
by a constant that is very close to 1. As softmax is invariant
under translation, Ldelay actually makes no difference to the
expression as it cancels, so (15) can be written as:

∂Laug

∂si
≈ exp (λdi + si)∑

i exp (λdi + si)
. (16)

Therefore, we can get these path derivatives of the aug-
mented objective function Laug, by simply computing the
regular transducer loss (1) with the modified inputs:

s′i = λdi + si. (17)
Let π = {πu}U−10 be the frame indexes that emit tokens

y0...U−1. As we want the alignments with a lower delay to
have a larger delay score, we define di as the sum of offsets
relative to the middle frame in each utterance:

di =
∑
u

(
T − 1

2
− πu

)
. (18)

Adding the middle-frame offset will make no difference to
the derivatives; it is done to prevent the delay-penalty from
changing the numerical value of the loss function too much,
which would make diagnostics harder to interpret. As shown
in Figure 1, we can equivalently implement (17) by adding the
offsets on the log-probabilities of emitting non-blank tokens
y(t, u−1) according to the specific frame indexes 0 ≤ t < T :

y′(t, u) = y(t, u) + λ×
(
T − 1

2
− t
)
. (19)

Therefore, by replacing y(t, u) with y′(t, u) in (2), it
would encourage low-delay alignments while maximizing
the total log-probability L, to prevent the transducer from
avidly enhancing the high-delay alignments to access more
future contexts 2. As shown in the red line in Figure 2, by
applying the delay penalty on transducer, we can gradually
achieve a lower symbol delay for the streaming Conformer.

4. EXPERIMENTS

4.1. Latency metrics

We measure the latency of streaming models with two types
of delay metrics described below: (1) Mean Alignment Delay

2An alternative way to implement (17) is to apply the delay penalty on
log-probability of emitting blank tokens ∅(t, u) in opposite direction.

(MAD) and (2) Mean End Delay (MED). The ground-truth
word-time alignments are obtained by performing forced
alignment with the Montreal Forced Aligner tool 3. For
simplicity, we only consider the correctly recognized words
for both metrics. Specifically, MAD is the mean of word
time difference between the predicted alignments and ground
truth, which is defined as:

MAD :=
1∑N−1

n=0 Sn

N−1∑
n=0

Sn−1∑
s=0

(
t̂ns − tns

)
(20)

Herein, t̂ns and tns are the timestamps of the s-th word in pre-
diction and ground truth respectively. N is the number of
utterances. Sn is the number of matched words between pre-
diction and reference in the n-th utterance. MED only consid-
ers the emitting time of the last word in an utterance, which is
calculated as:

MED :=
1

N

N−1∑
n=0

(
t̂nend − tnend

)
, (21)

where t̂nend and tnend are the timestamps of the last word in
prediction and ground truth respectively.

4.2. Experimental Setup
Our experiments are conducted on the popularly used open-
source dataset LibriSpeech [12], containing 1000 hours of
English reading speech. We employ Lhotse [13] for data
preparation. The acoustic features are 80-dimension Mel fil-
terbank with a frame length of 25 ms and frame shift of 10
ms. SpecAugment [14] and noise augmentation based on
MUSAN [15] are applied during training to improve general-
ization capability. Furthermore, speed perturbation [16] with
factors 0.9 and 1.1 are used to triple the training set. The
transcripts are tokenized into 500-class word pieces with Byte
Pair Encoding (BPE) [17].

To evaluate the effectiveness and robustness of the pro-
posed method, we adopt streaming Conformer [18] and uni-
directional LSTM as encoders respectively. Both of the Con-
former and LSTM consist of 12 layers, where a convolutional
downsampling layer with a factor of 4 is first used to obtain
the 512-dimension feature embedding. Similar to [19], we
train the Conformer with block-triangular masks to limit the
future context within a dynamic chunk size and infer it with a
fixed chunk size of 640 ms. For each of Conformer encoder
layer, the attention dimension and the feed-forward dimen-
sion are 512 and 2048, respectively. The LSTM layers adopt
similar residual connection structure as in Conformer [18],
each of which is composed of a unidirectional LSTM layer
with 1024 hidden units and a feed-forward layer with a hid-
den dimension of 2048. We use a stateless decoder [20],
which consists of an embedding layer followed by a 1-D con-
volutional layer with a kernel size of 2. Pruned transducer

3https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner



loss [3] is adopted for low memory usage and efficient com-
putation. The delay penalty is applied on both the simple loss
and pruned loss. We conduct experiments with 5 values of λ
in (19), including 0.0015, 0.0030, 0.0060, 0.0075, 0.0100.
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Fig. 3. Delay-accuracy trade-off comparison using different decod-
ing chunk sizes (ms) for streaming Conformer.
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Fig. 4. Delay-accuracy trade-off comparison on Conformer.
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Fig. 5. Delay-accuracy trade-off comparison on LSTM.

4.3. Delay and accuracy trade-off
Table 1 presents experimental results using different λ in (19).
For both Conformer and LSTM models, a larger λ consis-
tently leads to a lower symbol delay as well as a higher WER.
It manifests that we can balance the trade-off between symbol
delay and accuracy for both streaming Conformer and LSTM
models in a simple and effective way by tuning λ. Note that
for the Conformer that can access a chunk of future context,
the MAD and MED is further reduced to below zero, which
indicates that the model is regularized to emit symbols before
they are spoken.

We also investigate the effect of the decoding chunk size
of the streaming Conformer model. Figure 3 shows the delay-
accuracy trade-offs with decoding chunk size of 640 ms, 320
ms, and 160 ms, respectively, where the presented results for

Table 1. ASR results on LibriSpeech using Conformer and LSTM
as streaming encoder respectively.

Method λ

test-clean test-other
WER MAD MED WER MAD MED
(%) (ms) (ms) (%) (ms) (ms)

Conformer

0 3.4 373 485 8.66 374 484
0.0015 3.42 213 295 9.01 238 319
0.0030 3.70 102 176 9.35 137 208
0.0060 3.74 -3 62 9.56 39 104
0.0075 4.13 -62 -1 10.13 -27 37
0.0100 4.67 -93 -37 10.44 -62 -1

LSTM

0 3.78 418 437 9.55 419 425
0.0015 3.82 316 353 9.82 337 366
0.0030 3.86 257 299 10.08 284 317
0.0060 4.11 206 250 10.53 237 273
0.0075 4.52 172 214 10.91 203 240
0.0100 4.53 148 189 11.40 178 214

each experiment are averaged over test-clean and test-other.
Note that the MAD and MED here are the total delays includ-
ing the latency introduced by the chunk-wise decoding, which
equals half of the chunk length (i.e., 320 ms, 160 ms, and 80
ms). The results manifest that it is preferable to decode with
a larger chunk size while employing the delay penalty, which
yields a better trade-off between symbol delay and accuracy.

4.4. Comparison with FastEmit
We also conduct experiments to compare our proposed de-
lay penalization method with FastEmit [9]. For FastEmit, λ
is set to 0.0030, 0.0060, 0.0100, 0.0150, and 0.0200, respec-
tively. The FastEmit mechanism is also applied on both of the
simple loss and pruned loss in pruned transducer [3]. Figure 4
and Figure 5 present the delay-accuracy trade-offs of applying
FastEmit [9] and delay penalty as latency regularization on
both Conformer model and LSTM model, respectively. For
an overall comparison, the presented results for each exper-
iment are averaged over test-clean and test-other. It shows
that our method achieves similar delay-accuracy trade-offs
to FastEmit [9], while our method provides a more detailed
demonstration explaining why it is able to cause alignment
time to change.

5. CONCLUSION

We propose a method of delay penalty on transducer, which
is able to penalize the symbol delay in a simple and efficient
way without any extra token-time alignments. We provide
a detailed proof explaining why our method is able to cause
alignment time to change, so as to reduce the symbol delay.
We verify the proposed method on both streaming Conformer
and LSTM models. The experimental results show that we
can get a promising trade-off between symbol delay and ac-
curacy by tuning the hyper parameter λ.
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