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ABSTRACT

The transducer architecture is becoming increasingly pop-

ular in the field of speech recognition, because it is naturally

streaming as well as high in accuracy. One of the drawbacks

of transducer is that it is difficult to decode in a fast and paral-

lel way due to an unconstrained number of symbols that can

be emitted per time step.

In this work, we introduce a constrained version of trans-

ducer loss to learn strictly monotonic alignments between the

sequences; we also improve the standard greedy search and

beam search algorithms by limiting the number of symbols

that can be emitted per time step in transducer decoding, mak-

ing it more efficient to decode in parallel with batches. Fur-

thermore, we propose an finite state automaton-based (FSA)

parallel beam search algorithm that can run with graphs on

GPU efficiently. The experiment results show that we achieve

slight word error rate (WER) improvement as well as signif-

icant speedup in decoding. Our work is open-sourced and

publicly available1.

Index Terms— speech recognition, transducer, end-to-

end, beam search, parallel decoding

1. INTRODUCTION

The transducer architecture [1] has been growing in popular-

ity in the field of automatic speech recognition (ASR), espe-

cially for deployed real-time ASR systems [2, 3] because it

support streaming naturally while achieving high accuracy

Unlike decoding with CTC models where at most one

symbol can be emitted per time step, the number of symbols

emitted per time step is unconstrained in transducer. There-

fore, it is difficult to perform parallel decoding with trans-

ducer, because the number of sequential operations is hard to

bound in advance.

Various efforts have been made to accelerate transducer

decoding. In [3], caching techniques are used to avoid redun-

dant computation in the prediction network for identical pre-

diction histories. Pruning is used in [4] to reduce the number

of active hypotheses during the search to make computation

more efficient. Another way to reduce the number of active

hypotheses is proposed in [5] by using a prediction network

1https://github.com/k2-fsa/icefall

with limited label context to merge hypotheses with identical

prediction histories.

Different from the above-mentioned works that still al-

low unlimited number of symbols per time step, we limit the

number of symbols that can be emitted per time step to 1. The

most similar work to ours is [6] and [7], both of which con-

strain the hypotheses expanded at each decoding step to one.

However, there are two differences between our work and [6].

First, we also pose the constraint on model training so that it

has the same behavior in training and decoding. Second, [6]

uses two transitions in the transducer lattice during decoding,

first going upward and then rightward, while there is only one

diagonal transition in our work, which can further save com-

putation and is easier to decode in batch mode. In addition,

we use a different transducer architecture from [7] to learn

monotonic alignments between the sequence, which shows

more promising results.

The main contributions of this paper are:

• We accelerate the transducer decoding by limiting the

number of symbols emitted per time step to one.

• A constrained transducer is proposed to improve the

performance of the one-symbol-per-frame decoding.

• We implement an FSA-based parallel beam search al-

gorithm that can run with graphs on GPU efficiently.

2. TRANSDUCER DECODING ALGORITHMS

We will first analyze the state-space and transitions of trans-

ducer decoding algorithms in detail, during which we show

how we simplify the decoding process step by step. Then

we will describe the implementation details of our proposed

FSA-based beam search algorithm.

2.1. Traditional Transducer

With the vanilla, fully-recurrent transducer, the state-space

consists of pairs (y, t) where y is a sequence of symbols

(excluding ∅) and t is an integer frame index. If there are

T frames numbered 0, 1, . . . , T−1, then ((), 0) is initial (i.e.

empty-sequence, 0) and states (y, T ) are final.

The transitions are as follows: for symbols a 6= ∅ and

for 0 ≤ t < T , there are transitions (y, t) → (y + a, t) with

label a and probability P (a|y, t). Also (y, t) has a transition

to (y, t+1) with probability P (∅|y, t). There are no cycles

http://arxiv.org/abs/2211.00484v1


in this graph because transitions are always either to larger t

or to (same t, longer y).

2.2. Stateless Transducer

In the stateless transducer as in [8] the decoder network re-

quires only a finite context, for instance two symbols. There-

fore, the state-space can be reduced to only the most recent

symbols, e.g. two symbols of y; the initial state can be taken

to be ((∅,∅), 0), and when a transition c 6= ∅ is made from

state ((a, b), t), ((b, c), t)2 is reached.

2.3. Max-symbols decoding

Here, we describe decoding methods where we limit the max-

imum number of symbols S that can be emitted per frame, to

1, 2 or 3. The state-space is extended by a number 0 ≤ n < S

saying how many symbols we have already emitted on this

frame, so a state would be of the form (y, t, n). Transitions

with a blank label (∅) are: (y, t, n) → (y, t+1, 0). For

n ≤ S−1, transitions with label a 6= ∅ are: (y, t, n) →
(y+a, t, n+1). For n = S−1, transitions with labels a 6= ∅

are: (y, t, S−1) → (y+a, t+1, 0). This is equivalent to as-

suming the probability of blank is always 1 after emitting S

symbols on a given frame.

The expansion of the state space in max-symbols decod-

ing does not in itself affect the decoding result: for sufficiently

large n, the sequence y of the best path will still be the same,

and the y with the greatest total probability will also be the

same, as it is in conventional transducer decoding. This is

because there is a one-to-one mapping between paths in the

conventional and max-symbols decoding algorithm (for large

n).

2.4. FSA-based decoding

For simplicity, our FSA decoding algorithm assumes:

• We are using stateless transducer where the decoder

consumes a fairly small number of input symbols3.

• We are doing max-symbols decoding with S = 1. This

is quite similar to hybrid or CTC decoding, since all

transitions are to the next frame.

We further extend the state-space to enable decoding with

graphs (like conventional hybrid decoding, except with no

hidden Markov model topology). Taking the history-length

of stateless transducer to be 2, the states are of the form

((a, b), t, s) where a and b are symbols (possibly ∅ if we are

near the start of the utterance), t ≥ 0 is the frame-index, and

s is the decoding-graph state. Thus, our decoding algorithm

implements graph composition. For each arc s → r in the

decoding graph with label c 6= ∅, and probability q, there

exists a transition in the lattice ((a, b), t, s) → ((b, c), t+1, r)
with label c and probability qP (c|(a, b), t). In addition, we

2Our FSA-based decoding uses this reduced search-space, but our non-

FSA-based beam search algorithm still uses the full sequence (y, t) as the

state space (so we can re-use the previous beam-search code).
3This makes it possible to encode the history sequence into a single inte-

ger.

have blank transitions ((a, b), t, s) → ((a, b), t+1, s) with

probability P (∅|(a, b), t) and label ∅ = 0. The graph is

assumed to be epsilon-free.

Our decoding algorithm is implemented in k2 4 using

ragged tensor data structures, which enables rapid processing

of irregular-sized objects in parallel on the GPU.

2.5. Beam search

It is hard to compactly describe the search strategy of the al-

gorithm in [1], but the goal generally seems to be to keep no

more than the N best paths active; and the frames are pro-

cessed one by one. The order of processing within a frame

is “best-first”. This is not consistent with the goal of sum-

ming probabilities, because we may have already processed a

sequence before its prefix; also, the algorithm generates du-

plicates and is not very explicit about how to deal with this.

People have implemented slightly different versions of this

algorithm, e.g. ESPNet [9] dispenses with the “prefix search”

part of the algorithm and instead implements de-duplication

of hypotheses.

For our proposed FSA-based decoding, all transitions

are from frame t to t+1 because we use max-symbols= 1.

There are 3 constraints: a log-probability beam, a max-states

constraint (that limits the number of tuples ((a, b), t, s) for a

given t), and a max-contexts constraint that limits the number

of symbol contexts like (a, b) that are active on a given t. On

each frame we first do propagation to the next frame without

pruning. We then apply the max-states and beam constraints

in one pruning operation; and then apply the max-contexts

constraint in a second pruning operation.

The pseudocode of our FSA-based decoding is given in

Algorithm 1 5, it can decode many streams in parallel. The

output of our algorithm is a lattice (i.e. an FSA), we can find

either the best path or the ∅-free label sequence y with the

highest probability, using standard FSA operations, after gen-

erating the lattice. The label sequence with the highest prob-

ability is found by

• Generating n-best paths from the lattice using an easy-

to-parallelize randomized algorithm.

• Finding the unique paths y from the n-best paths by

removing ∅ from the label sequences.

• Generating FSAs from the unique paths, composing

these with the lattice, and computing the total proba-

bility of the results.

3. CONSTRAINED TRANSDUCER TRAINING

Since we find that decoding with max-symbols=1 works well,

so that in the decoding algorithm, consuming a non-∅ symbol

takes us from frame t to t+1, it is natural to try incorporating

this rule in training as well.

4https://github.com/k2-fsa/k2
5We call it fast beam search in icefall (https://github.com/k2-fsa/icefall).
6This is a RaggedShape in k2 (https://github.com/k2-fsa/k2)



Algorithm 1 FSA-based Parallel Beam Search

Input: The decoding graphs for each sequence fsas;

The pruning parameters beam, max contexts, max states;

The instance of transducer model M ;

The input acoustic features feats;

1: Streams← []
2: for i← 0 to num sequences do;

3: Streams[i]← Init(fsas[i], beam,max contexts,max states);
4: end for

5: for t← 0 to T do;

6: Enct ← M.encoder(feats[t])
7: shape 6, contexts← GetContexts(Streams)
8: Decout ←M.decoder(contexts)
9: Encout ← IndexSelect(Enct, shape.RowIds(1))

10: log probs←M.joiner(Encout,Decout)
11: Streams.ExpandArcs(log probs)
12: Streams.Prune()
13: end for

14: Streams.TerminateAndF lushToStreams()
15: lattice← Streams.FormatOutput()
16: return lattice

3.1. Modified Transducer

We first try training the transducer by introducing a diagonal

transition in the transducer lattice, just like the way that [7]

did, where emitting a non-blank symbol takes you to the next

frame. We call this “modified transducer”. If the regular core

transducer recursion is:

α(t, u) = log add (α(t− 1, u) +∅(t− 1, u) ,

α(t, u− 1) + y(t, u− 1))) (1)

with the final data-likelihood beingα(T−1, U)+∅(T−1, U),
the modified transducer is:

α(t, u) = log add (α(t− 1, u) +∅(t− 1, u) ,

α(t− 1, u− 1) + y(t− 1, u− 1))) (2)

with the final data-likelihood being α(T, U).

3.2. Constrained transducer

We also propose a new architecture called constrained trans-

ducer, which is like modified transducer in that you have to

go to next frame when you emit a non-blank system, but this

is done by ”forcing” you to take the blank transition from the

next context on the current frame, e.g. if we emit c given ”a

b” context, we are forced to emit ”blank” given ”b c” context

on the current frame. The core recursion is:

α(t, u) = log add (α(t− 1, u) +∅(t− 1, u) ,

α(t− 1, u− 1) + y(t− 1, u− 1) +∅(t− 1, u))) (3)

with the final data-likelihood being α(T, U).

4. PRUNED RNN-T TRAINING AND LM-SCALE

We proposed the pruned RNN-T training in our previous

work [10]. This is a more efficient way of evaluating the

RNN-T recursion, by using a “trivial” joiner network to

quickly evaluate the recursion and figure out which (t, u)
pairs are important, then only evaluating the full joiner on a

subset of symbols. For the purpose of this work, the details

on pruning are emitted. What is important to know is that

as part of the pruned RNN-T training, we regularize the loss

function with a trivial joiner, which simply adds logprobs

derived from the encoder with logprobs from the decoder;

and we interpolate the trivial-joiner logprobs with αlm, or lm-

scale, times logprobs derived from the decoder alone. This

essentially means that we are including a language-model

probability (predicting the tokens or blanks) in the log-probs

used in the simple-joiner recursion. This lm-scale term forces

the decoder log-probs used in the trivial joiner to be close to

the probabilities of a “real” language model (on the vocabu-

lary including ∅). For reasons that are currently unclear to

us, this appears to affect the model in some way that makes

decoding with max-symbols= 1 work better, and also slightly

improves WERs. The trivial joiner that is being affected by

this regularization is not used in decoding, so it must be an

indirect effect that acts by changing the encoder output in

some way.

5. EXPERIMENTS

5.1. Dataset and Setup

We conduct all our experiments on the popularly used Lib-

rispeech corpus [11]. Lhotse [12] is used for data prepa-

ration. The acoustic feature is 80-channel Fbank extracted

from a 25ms window with a stride of 10ms. We also use

spec-augmentation [13] and noise augmentation (by mixing

MUSAN [14]) to improve generalization. Furthermore, speed

perturbation [15] with factors 0.9 and 1.1 is used to triple the

training set.

Our encoder model is a re-worked version of Con-

former [16]. It has 12 encoder layers, each of which con-

tains 8 self-attention [17] heads with attention-dim 512. The

subsampling factor in the convolution module is 4 and the

feed forward dimension is 2048. The decoder model is a

stateless network [8], consisting of an embedding layer with

embedding dimension 512 followed by a 1-D convolution

layer with kernel size 2. The outputs of the model are 500

sentence pieces [18] with byte pair encoding (BPE). All of

the models are trained with pruned RNN-T loss [10].

5.2. ASR accuracy

Table 1 shows the max-symbols decoding results of three

types of transducers. For regular transducer, the WERs in-

crease when the number of symbols per frame is constrained

during decoding, while there are no degradations in WERs

for constrained transducer. We also find that the modified

transducer produces much worse results than the other two,

and there will be a lot of insertion errors when we increase the

number of symbols that can be emitted per frame. It seems

that during the training, blank probability is important when

transiting to the next frame given a non-blank symbol.



Table 1. The max-symbols decoding results (WER) of different

architecture of transducers (without lm scale).
Setup Max Greedy Beam FSA based

Symbol Search Search Beam Search

clean other clean other clean other

Regular

1 2.72 6.33 2.67 6.21 2.70 6.21

2 2.68 6.28 / / / /

∞ 2.68 6.28 2.65 6.18 / /

Constrained

1 2.76 6.46 2.74 6.35 2.74 6.33

2 2.76 6.46 / / / /

∞ 2.76 6.46 2.74 6.32 / /

Modified

1 3.68 9.43 3.54 9.07 3.57 9.03

2 70.9 70.7 / / / /

∞ 1179 1089 - - / /

Table 2. The max-symbols decoding results (WER) of different

architecture of transducers (with lm scale=0.25).
Setup Max Greedy Beam FSA based

Symbol Search Search Beam Search

clean other clean other clean other

Regular

1 2.66 6.25 2.62 6.08 2.67 6.20

2 2.66 6.25 / / / /

∞ 2.66 6.25 2.62 6.10 / /

Constrained

1 2.61 6.45 2.6 6.39 2.64 6.39

2 2.61 6.45 / / / /

∞ 2.61 6.45 2.6 6.39 / /

Modified

1 2.62 6.41 2.59 6.33 2.64 6.32

2 6.35 10.6 / / / /

∞ 108 114 - - / /

By comparing Table 2 with Table 1, it shows that the

lm scale in the pruned RNN-T loss not only makes decoding

with max-symbols= 1 work better, but also helps to improve

the performance.

Table 3. The effects of how duplicated alignments of the same

hypotheses are handled.
Decoding Max Merge OP

Method Symbol Max LogAdd

clean other clean other

Beam 1 2.63 6.37 2.60 6.39

Search ∞ 2.64 6.37 2.60 6.39
FSA based

beam search
1 2.64 6.39 2.66 6.42

The stated goal of the beam search algorithm presented

in [1] seems to be to find the y with the largest length-

normalized probability argmax
y
p(y). So we also investi-

gated the effects of length normalization and the way how we

handle duplicate alignments of the same hypotheses. Table 3

and 4 show that both of them have little impact on the WER.

5.3. Decoding speed

Table 5 illustrates the real-time factor (RTF) for the test-clean

and test-other datasets using different decoding methods. We

conduct the benchmark on an NVIDIA V100 GPU with 32

GB RAM, when running in batches, dynamic batch size is

used to make full use of the memory. For greedy search and

beam search that are hard to support parallel decoding with

max-symbol= ∞, only the encoder network runs in batches

when batched equals ”Yes”. The results show that there is

a clear speed advantage in decoding by limiting the number

Table 4. The effects of length normalization to WERs.
Decoding Max Length Norm

Method Symbol (Yes) (No)

clean other clean other

Beam 1 2.60 6.39 2.60 6.40

Search ∞ 2.60 6.39 2.60 6.38

Table 5. The RTF of different decoding methods.
Decoding Max RTF

Method Symbol batched(No) batched(Yes)

Greedy Search
1 0.011 0.0009

∞ 0.011 0.0078

beam search
1 0.03 0.0068

∞ 0.126 0.125
FSA based

beam search
1 0.05 0.002

of symbols to 1, especially when running in parallel. It also

shows that our proposed FSA-based beam search is 3.4 times

faster than the standard beam search in [1].

5.4. Decoding with FSA

Table 6. The WERs and RTF of FSA based Beam Search with

trivial graph and LG graph.
Decoding Merge OP WERs RTF

Graph clean other

Trivial Graph
Max 2.64 6.39 0.0024

LogAdd 2.66 6.42 0.0112

LG Graph
Max 2.84 6.37 0.0025

LogAdd 2.86 6.36 0.004

The FSA-based beam search results in table 1 2 3 5 are all

decoded with a “trivial graph” that has only one state. Table 6

gives the WERs and RTF for FSA-based beam search with a

general graph. The G in LG graph is a 3-gram LM trained

on Librispeech text corpus, which has around 180MB in arpa

text format. From the table, we can see that using a larger

FSA graph won’t affect the RTF too much, which shows that

our FSA-based beam search algorithm also works efficiently

on general FSA graphs. As for the performance degradation

on LG graph, we find that there are some words not present

in the released lexicon, making the results on LG graph worse

than the trivial graph. As for the larger RTF on trivial graph

using log add comparing with LG graph, it is because the de-

coding lattice generated with trivial graph is larger than that

generated with LG graph, which makes it take more time to

find the label sequence with the highest probability .

6. CONCLUSIONS

In this paper, we improve the transducer decoding algorithms

by limiting the number of symbols that can be emitted per

time step to one, making it possible to decode in parallel us-

ing batches. We also propose a constrained transducer ar-

chitecture and lm scale training in our pruned RNN-T loss

that make the decoding with max-symbol= 1 work better.

What’s more, we have implemented a fast and highly-parallel

FSA-based decoding algorithm for transducer that generates

lattices; it gives slightly better accuracy and up to 3.4 times

faster performance than conventional transducer decoding.
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