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ABSTRACT

We propose a non-linear feature space transformation for
speaker/environment adaptation which forces the individ-
ual dimensions of the acoustic data for every speaker to be
Gaussian distributed. The transformation is given by the
preimage under the Gaussian cumulative distribution func-
tion (CDF) of the empirical CDF on a per dimension basis.
We show that, for a given dimension, this transformation
achieves minimum divergence between the density function
of the transformed adaptation data and the normal density
with zero mean and unit variance. Experimental results on
both small and large vocabulary tasks show consistent im-
provements over the application of linear adaptation trans-
forms only.

1. INTRODUCTION

Speaker adaptation is a key technique that is used in most
state-of-the-art speech recognition systems. Traditionally, it
consists in finding one or more linear transforms such that,
when it is applied to either the Gaussian means [6] or, as
in constrained MLLR, to the feature vectors themselves [5],
the likelihood of the acoustic data associated with an utter-
ance is maximized with respect to an initial word hypoth-
esis. The utterance is then re-decoded after applying the
transforms to either the models or to the features or both (as
for unconstrained variance transforms).

In recent years, the family of feature space transforma-
tions for speaker adaptation has been extended by Dhara-
nipragada and Padmanabhan [4] through the addition of a
new class of non-linear transforms obtained by matching
the overall cumulative distribution function (CDF) of the
adaptation data to the CDF of the training data on a per di-
mension basis. In addition to having more potential over
linear transforms for severely mismatched decoding condi-
tions, this non-linear mapping also has the advantage that it
does not require a first pass decoding step, i.e. it is com-
pletely unsupervised.

Independently, Chen and Gopinath [2] have proposed
a Gaussianization transformation for high-dimensional data
modeling which alternates passes of linear transforms for
achieving dimension independence and passes of marginal
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Gaussianization of the individual dimensions through uni-
variate techniques. At first sight, the two previous tech-
niques have little in common. The link becomes apparent if
we use the distribution matching technique (also called his-
togram equalization) to match the CDF of the speaker data
to the CDF of a Gaussian on a per dimension basis which
is exactly what we propose to do in this paper. Indeed,
marginal Gaussianization can be performed either paramet-
rically by assuming a Gaussian CDF mixture model for the
data as in [2] or non-parametrically by using the empirical
CDF or a binned version thereof as in [4]. The advantage
of the latter is that it bypasses the problems associated with
choosing the size (complexity) of the mixture models while
having the drawback that it requires more adaptation data to
get a reliable estimate of the CDF if no smoothing is to be
performed.

There are two advantages of Gaussianization for ASR
systems. The first one has to do with the fact that, in most
systems, the HMM output distributions are modeled with
mixtures of diagonal covariance Gaussians. It is therefore
reasonable to expect that gaussianizing the features will en-
force this particular modeling assumption. The second ad-
vantage is that both test and training speakers are warped to
the same space which naturally leads to a form of speaker
adaptive training (SAT) [1] through non-linear transforms.
The benefit of retraining the models on CDF-warped train-
ing data in the context of the histogram equalization algo-
rithm has been highlighted in [7].

The paper is organized as follows: in section 2, we out-
line the derivation of the transform. In section 3, we present
some experimental evidence of its utility followed by some
concluding remarks in section 4.

2. GAUSSIANIZATION TRANSFORM

Let X € R" be the random variable (r.v.) describing the
adaptation data for a given speaker. The differentiable and
invertible function 7" : R™ — IR" is a Gaussianization
transformation if the random variable Y = T'(X) is nor-
mally distributed i.e.

T(X) ~ N(0,1)
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Finding the joint Gaussianization transform is in general
a difficult problem (see [2]). We will make the simplifying
assumption that the dimensions of X are statistically inde-
pendent. The problem can be recast as finding n indepen-
dent mappings TV, ..., T(") such that

TOXD) ~ N(0,1), 1<i<n

where X (V) represents component i of the random variable
X. From now on, we will deal only with one-dimensional
problems and for the sake of clarity we will drop the su-
perscripts related to the dimension whenever they are not
necessary. Consider X the r.v. corresponding to a particu-
lar dimension and let p x be its probability density function.
Moreover, let us denote the standard normal PDF by ¢ and
its CDF by @ that is:

and

B(z) = /_ "ot

Correspondingly, let F'x be the CDF of X i.e.

T

Fx(o) = P(X <) = [

— 00

DX (t) dt

We aim at finding a differentiable and invertible trans-
form 7' which minimizes the Kullback-Leibler divergence
between py and ¢ where py is the PDF of Y = T'(X).
Stated otherwise, we look for

T = argmin D(¢ || py)

= argmin —¢(y) M
— argn /]R o) log =00y

Now px and py are related through the following equation

_ px(T7' ()

=TTy px(T OIT" () @

Py (y)

where | T~ (y)| represents the absolute value of the deter-
minant of the Jacobian of the transformation which for one-
dimensional transforms is simply the derivative. Assuming
that 7" is monotonically increasing (recall that 7" is invert-
ible) we can drop the absolute value in (2).

It is known that the divergence is minimized when the
two distributions are pointwise the same, that is

o(y) =py(y) =px(T'WNT " (y), VyeR (3)

Next, we will attempt to solve the differential equation (3)
in order to find 7. First, since (3) holds for all y, we can in-
tegrate both sides from —oco to T'(z) and we get

= / Px (t)dt
T-1(—0)

where the latter equality follows from applying the substi-
tution rule ¢ = T~'(y) in the second integration. Now,
assuming 7'~ !(—o00) = —oc, we further get

&(T(z)) = Fx(z) (5)

or equivalently:

T(z) = (&7 o Fx)(x), V€ R (6)

which means that the desired transformation is given by
the preimage of F'x under the Gaussian CDF ®. It can
be easily verified that T is monotonically increasing with
T—'(—00) = —oc which is consistent with our previous
assumptions. Also note that if T is a solution to (1) then
—T is a solution as well.

Now, since F'x is not available we can approximate it
with the empirical CDF

1 N
Fy(z) = > 0z — ) (7)
i=1

with 8 denoting the step function and where 1, ...,z N are
N samples drawn from px (the adaptation data for a par-
ticular dimension). This is in contrast with the work of [2]
where the author uses a mixture of Gaussian CDF’s as an
approximator for F'y. From a practical standpoint, we note
that

Foli) = —m”]kv(x") @®)

where rank(z;) is the rank of z; in the sorted list of sam-
ples. Combining (6) with (8) yields the final form of the
Gaussianization transform

y,:qu(%), 1<i<N (9

I-330



3. EXPERIMENTS AND RESULTS

We experimented with two different databases: an in-car
small vocabulary task and the Switchboard corpus which is

a large vocabulary conversational telephone speech database.

The Gaussianization transform is implemented as a sim-
ple table lookup where the entries are given by the inverse
Gaussian CDF (®~!) sampled uniformly in [0, 1]. In our
experiments, we used one million samples. For each di-
mension of a speaker’s data, we first sort all the samples
then apply equation (8) to locate the table entry. Figure 1
shows a typical transform and the corresponding original
and transformed distributions.

4
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Figure 1: Example of transform and distributions.

3.1. In-car Database

We evaluated the Gaussianization transform on an in-car
database. The training data consisted of speech collected
in several stationary and moving (30 mph and 60 mph) cars
with microphones placed at a few different locations — rear-

view mirror, visor and seat-belt. We created additional data
by synthetically adding noise, collected in a car, to the sta-
tionary car data. Overall, with the synthesized noisy data,
we have about 480 hours of training data.

The acoustic model comprised of context-dependent sub-
phone classes (allophones). The context for a given phone
is composed of only one phone to its left and one phone
to its right and does not extend over word boundaries. The
allophones are identified by growing a decision tree using
the context-tagged training feature vectors and specifying
the terminal nodes of the tree as the relevant instances of
these classes. Only the clean (stationary car) data was used
to grow the decision tree. Each allophone is modeled by a
single-state Hidden Markov Model with a self loop and a
forward transition. The training feature vectors are poured
down the decision tree and the vectors that are collected at
each leaf are modeled by a Gaussian Mixture Model (GMM),
with diagonal covariance matrices. The Gaussians were dis-
tributed across the states using BIC based on a diagonal co-
variance system. The acoustic models used separate digit
phonemes with a total of 89 phonemes. Overall, we had
680 HMM states in our acoustic model.

Standard 13-dimensional MFCC vectors were extracted
at 15 ms intervals. Each cepstral vector was concatenated
with 4 preceding and 4 succeeding vectors to create a com-
posite vector of dimension 117. This composite vector was
then projected onto a n = 39 dimensional space using Lin-
ear Discriminant Analysis (LDA). The projected features
were further transformed using a Maximum Likelihood Lin-
ear Transform (MLLT) [S]. More details about the system
can be found in [3].

We report word error rates on a test set comprised of
small vocabulary grammar based tasks (addresses, digits,
command and control) and consists of 73743 words. Data
for each task was collected at 3 speeds: idling, 30mph and
60mph.

Five different models, each with about 10K Gaussians,
were evaluated on this test set and their results are reported
in Table 1:

e A baseline model trained on 39-dimensional LDA+MLLT

features.

¢ A model where each training and test speaker under-
went a non-linear Gaussianization.

e A model where each training and test speaker data
was transformed with a linear FMLLR transform.

¢ A model where each training speaker data was Gaus-
sianized and where each test speaker data was gaus-
sianized followed by a linear FMLLR transform.

e A model where each training and test speaker data
was Gaussianized followed by a linear FMLLR trans-
form.
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Systems Omph | 30mph | 60mph | all
Baseline 1.47 2.62 6.52 3.54
Gaussianized 1.32 2.36 4.69 2.79
FMLLR-SAT 1.16 1.77 3.80 2.25
Gaussianized+ | 0.93 1.72 3.33 2.00
FMLLR

Gaussianized+ | 1.05 1.71 3.39 2.06
FMLLR-SAT

Table 1: Word error rates on an in-car database of small

vocabulary tasks

3.2. Switchboard database

The second set of experiments were conducted on the Switch-
board database. The test set consists of 72 two-channel con-
versations (144 speakers) totaling 6 hours used by NIST
during the RT’03 conversational telephone speech evalua-
tion. The recognition system uses a phonetic representation
of the words in the vocabulary. Each phone is modeled with
a 3-state left-to-right HMM. Further, we identify the vari-
ants of each state that are acoustically dissimilar by asking
questions about the phonetic context (within an 11-phone
window) in which the state occurs. The questions are ar-
ranged hierarchically in the form of a decision tree, and its
leaves correspond to the basic acoustic units that we model.
The output distributions for the leaves are given by a mix-
ture of at most 128 diagonal covariance Gaussian compo-
nents totaling around 158K Gaussians. The Gaussians were
trained on VTL-warped PLP cepstral features transformed
to 60 dimensions through the application of LDA followed
by MLLT. In addition, we performed speaker adaptive train-
ing in feature space by means of constrained MLLR trans-
forms [5]. More details about the baseline system can be
found in [9]. Feature space Gaussianization is applied on
the final 60-dimensional SAT features (that is after VTLN,
LDA+MLLT and the feature space MLLR transforms). In
Table 2, we show a comparison between two sets of sys-
tems trained on original and gaussianized features: systems
trained using maximum likelihood and systems trained us-
ing a minimum phone error (or MPE) criterion which is a

variant of MMIE training [8].

4. CONCLUSION

We presented a non-linear dimensionwise Gaussianization
transform for speaker/environment adaptation. This trans-
formation achieves minimum divergence between the den-
sity function of the transformed adaptation data and the nor-
mal density with zero mean and unit variance. Clearly, the
target distribution for the transformation can have an arbi-
trary form although the choice of a normal distribution facil-
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Features ML MPE

baseline (FMLLR-SAT) 30.9% | 29.1%

FMLLR-SAT+Gaussianized | 30.5% | 28.5%

Table 2: Word error rates on original and gaussianized fea-
tures using ML and MPE trained models.

itates the use of diagonal covariance Gaussians in the final
acoustic model. We have presented experimental evidence
on both a small and a large vocabulary task showing that
non-linear Gaussianization provides additional gains on top
of standard linear feature space transforms (11% relative
improvement for the in-car database and 2% for Switch-
board).
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