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ABSTRACT not expect a single shared GMM to model all phones very wedl, w
learn the mixture weights in the GMM which allows Gaussiams i

We describe an acoustic modeling approach in which all piimne irrelevant locations in acoustic space to be turned off. \Wesivow

states shadre a :zommo_n rﬁaussna_n Mlxtgre Modiltﬁtntjctturetlgd that learning the weights is an important feature of the rhotlee
means and mixture weights vary in a subspace ot the to aE acoustic model we describe here seems to give substartiietiigr
space. We call this a Subspace_ Gaussian Mixiure Model (SGMM)resuIts than a conventionally trained acoustic model.

Globally shared parameters define the subspace. This $gt@os- Section 2 introduces the model; Section 3 discusses thelmode

tic model allows for a much more compact representation aresg and the reasons why we have chosen this particular formi ¢
better results than a conventional modeling approachjcpéatly . y tis part !
discusses the framework of our experiments in terms of code a

with smaller amounts of training daté_' _ tools; Section 5 describes the software we used in testirngeit-
Index Terms— Speech Recognition, Hidden Markov Models, tion 6 describes our experimental setup and training proesy Sec-
Gaussian Mixture Models tion 7 gives experimental results, and Section 8 gives csimhs.

1. INTRODUCTION 2. SUBSPACE GMM ACOUSTIC MODEL

This paper describes work done during the Johns Hopkinsdoniv ) . )

sity 2009 summer workshop by the group titled “Low Developme "€ most basic form of the model can be expressed in the folgpw
Cost, High Quality Speech Recognition for New Languageszmd ~ three equations:

mains”. For other work also done by the same team also see [1]

which describes work on lexicon learning, [2] which desesilihe . !

use of this approach in conjunction with out-of-languagening p(xlj) = ZwﬁN(’“ Hiis 3i) @)

data, and [3] which provides more details on issues of speaiap- =1

tation in this framework. In [4] the technical details of thgproach wii = Miv; )

are presented more thoroughly than is possible here. w B exXp Wy V; 3)
J -

In the acoustic modeling approach we explore here, eacltlspee
state is a Gaussian Mixture Model (GMM) but the parameters of
the GMM are not the parameters of our overall model. Insteacdh
state is associated with a vector-valued quantity of dineernsimilar
to the feature dimension, and there is a globally shared mgimm
this “state vector” to the means and weights of the state’sMcM
This approach has some similarities to Eigenvoices [5] alugdter
Adaptive Training [6], except that we are using a subspaceddel
the variablility between phones rather than the secondiegteof
speaker variation. There is also some relationship to time Bactor
Analysis approach used in speaker identification [7]. Bseaue do

I T ?
Yiv—iexpwiTv;

wherex € RP is the feature;j is the speech state;; € R° is
the “state vector” withS ~ D being the subspace dimension, and
the model in each state is a simple GMM withGaussians, mix-
ture weightsw;;, meansu;; and covariance&; which are shared
between states. The means and mixture weights are not parame
of the model. Instead they are derived from a state-speafitov
v; € 5 with the “subspace dimensior8 typically being around
the same as the feature dimensionvia globally shared parameters
M, andw;. The reason why we describe it as a “subspace” model
This work was conducted at the Johns Hopkins University Samm IS that the state-specific parametersdetermine the means;; and
Workshop which was supported by National Science FoundaGeant  weightsw;; for all 4, which isI(D + 1) parameters per state, but
Number 11S-0833652, with supplemental funding from GooBlesearch,  the dimension of5 will typically be much less thaid(D + 1) so the
DARPA's GALE program and the Johns Hopkins University Hunham- models span a subspace of the total parameter space.

guage Technology Center of Excellence. BUT researchere wartially . :
supported by Czech MPO project No. FR-TI1/034. Thanks to Rk&ff For a typical setup the number of parameters in the vestors

and faculty, to Tomas Kadparek for system support, toidkaiguyen for ~ Would be very small relative to the gIObaII): shared p”aramat\e
introducing the participants, to Mark Gales for advice arkkHhelp, and to ~ and M, so we introduce the notion of a “sub-state” where each
JanCernocky for proofreading and useful comments. statej hasM; sub-states each with its own mixture weight, and




vectorv;,, and the equations become:

]\/[j I
p(xli) = D cim Y wimiN (% ymi, i) 4)
m=1 =1
Himi = Mivjm (5)
T
eXpwW; Vjm
wjmi - J (6)

S exp W Vm
A further modification we make is to add an additional “spealee-

tor” v(®) e R7, which lives in a “speaker subspace” of dimension
(typically T' ~ S ~ D). The speaker-adapted mean now becomes:

o), MV + Niv®, (7)

2.3. Decoding using SGMM models

In large vocabulary applications the decoding speed of tbdain

is comparable to a normal HMM. This is so even though the ex-
panded GMM is many times larger than a conventional systeim an
uses full covariances. It is possible to evaluate likeldwquickly
because the extra structure of the model gives us oppadsiridr
pre-computation and pruning that are not applicable in aveon
tional HMM-GMM system. As mentioned above, we use the UBM
to prune the set of indexeghat we need to evaluate on each frame
reducing it to a number (e.g. 10 or 20) that is comparable ¢o th
number of Gaussians in a state in a conventional system. We ca
structure the likelihood evaluation in such a way that eatiihg each
additional Gaussian is onty(S); remember that ~ D. The mem-

where theN; matrices define the “speaker subspace”. The equa®ry requirements will usually be dominated by a single ndiziray

tion for the weights remains the same to avoid excessivepeaker
computation. The use of two symmetric terms in (7) is renciemns
of the Joint Factor Analysis approach in speaker identibiodf].

2.1. Characteristics of the Subspace GMM model

Before going into detail on the training procedure of thisdelpwe
will summarize some of its main properties. Firstly, it is aus-
sian Mixture Model. This means that most standard techsigsed

in conventional modeling, such as VTLN, Constrained MLLBt-n
mal feature extraction procedures etc., are applicabléhodgh the
expandedsMM will typically be much larger than a normally con-
figured GMM system, our model has fewer parameters than a no
mal system. By this we mean that a well-tuned SGMM system will
typically have fewer parameters than a well-tuned GMM systay
typically a factor of two to four. With smaller amounts of itreng
data, the parameter size of the SGMM system will actuallydra-d
inated by thesharedparameterdVI; and X;, which introduces the
possibility of training the shared parameters on out-afidm data
and training the state-specific parameters on a smaller @nodin-
domain data. We explore this in [2].

2.2. Training SGMM models

The training of this model is an Expectation-Maximizatidg-N1)
procedure just like normal HMM training. In principle we e al-
ternate training different parameter types on differem Eerations
(e.g. v parameters theM parameters). We initialize the model by
training a single GMM on all speech classes pooled togetié.
call this global model the “Universal Background Model” oBM,
and write its parameters @g, 3, andw;. Although the UBM does
not appear in Equations (4) to (6), it must be kept during légea-
tions of model training and during testing because it is Wegutune
the set of indexeswhich we need to evaluate on each iteration. We
initialize the parameterd/1;, v;,, 3, etc. in such a way that the
means and variances in each state on the first iteration arsathe
as the UBM.

For the most part, training is fairly straightforward. Thgue-
tions relating to the update of the paramef®fsandv are reminis-
cent of Speaker Adaptive Training (SAT) [8], in its origirfatm as
it relates to MLLR adaptation. The parameter updates:fpr and
33; are very simple and analogous to normal GMM training. Updat-
ing the parameters; is slightly more difficult, as there is no natural
E-M-like process to update it, but in [4] we describe a simmp&thod
that works well. Its derivation is based on a combinationesfsén-
type inequalities, local second-order Taylor-series egmas, and a
modification to the resulting quadratic auxiliary functishich en-
sures stability while maintaining the same local gradient.

constantn,,; that we compute for each Gaussian in the expanded
GMMs; this contains data-independent terms in its contidiouto

the likelihood. The overall memory requirement is not muetyér
than a conventional model. Something we should note in a@nne
tion with decoding is that the optimal language model weigith
SGMM models is typically less than for conventional models).

10 rather thani 4.

3. WHY THIS MODEL?

In this section we discuss why we have chosen the particotar 6f
model of Equations (4) to (6). This is to address various tipes
and comments that we have encountered.

e |s this model related to tied-mixture (semi-continuous)
models?

It is different because the Gaussians within each state dif-
fer in mean as well as mixture weight. Also, the mixture
weights are represented in a lower dimension rather than

being parameters of the model.

Why introduce sub-states rather than simply increasing

the subspace dimension?

Increasing the subspace dimensi§nwvould lead to an in-
crease in the number of parameterdvin, which would lead

to parameter estimation problems on modestly-sized system
Also, we have never observed any benefit from increasing the
subspace dimension beyond about 60 or so, whereas intro-
ducing sub-states consistently helps.

Is it necessary to model the mixture weights?

In speaker identification, the mixture weights are typicall
not modeled. However, in our experiments, when we turn
off the estimation ofw; this model gives very bad results, as
described in Section 7. So we believe the mixture weights are
very important.

exp w?vim
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Why use the form for the mixture

weights?

This form makes the log mixture weights a linear function
of the vectorv;,, (the numerator:w; v;,,), followed by a
normalization to make them sum to one. It has the same form
as multi-class logistic regression. It ensures that theyksi

are positive and sum to one.

Why use shared variances?

Making the variances a function of the vectars,, is very
hard. The only way to make this fast in test-time is to make
the precisions (inverse variances) linear functions pf, as



in SPAM [9]. This introduces difficulties ensuring positive 5. DATABASES AND BASELINE SYSTEM
definite variance's
Here we report experiments on Callhome English. See [2Liidhér
e Why use full covariances rather than diagonal? results on Spanish and German and on multi-lingual expertisne
Because of the structure of the model, using full covariance Callhome English is a part of the Callhome corpora [16] aéd
does not substantially change either the parameter count dy LDC for languages including Spanish, Arabic, German, Man
the decoding speed. We will show in Section 7 that using fulldarin and Japanese. The conversational nature of the spattiase
covariances helps substantially. along with high out-of-vocabulary rates, use of foreign dgand
telephone channel distortions makes the task of speeclyniticm
e Isitpossible to combine standard adaptation and discrim-  on this database challenging.
inative training techniques with this model? The English Callhome database consists of 120 spontaneous
For the most part. Vocal Tract Length Normalization (VTLN) telephone conversations between native English speak&ighty
is trivial to combine with it. Constrained MLLR is also triv- conversations corresponding to about 15 hours of speeaisadeas
ial, although because we use full covariances, if we want taraining data. Two sets of 20 conversations, roughly coirigi1.8
estimate the transform from our model we need to compute ihours of speech each, form the test and development sets.
in a different way, which we describe in [3]. MLLR is very We use 39 dimensional PLP [17] features with energy and
inefficient with this style of model because there is too muchand AA and per-speaker mean and variance normalization to build
per-speaker precomputation to do, but it gives very littte i a single pass HTK [12] based recognizer with 1920 tied statels
provement on top of CMLLR in typical scenarios. We have 18 mixtures per state, tuned to optimize WER after adaptafitie
previously successfully implemented discriminative rinag same features and context tree were used for our system. &tle us
with this model (to be described in [11]). a 62k word lexicon with an OOV rate of 0.4%, and a trigram lan-
guage model with a perplexity of 95, built using the SRILM &0
[15]. The language model is interpolated from individualdels
created from the English Callhome corpus, the Switchboarpus
4. CODE FRAMEWORK [18], the Gigaword corpus and some web data. The web data is ob
tained by crawling the web for sentences containing highueacy
The framework we developed to train and test SGMM models usebigrams and trigrams occurring in the training text of thdll@@ane
HTK [12] to do feature extraction and build the baseline niede corpus. The 90K PRONLEX dictionary with 47 phones is used as
which are used to align the training data for the first few passf  the pronunciation dictionary for the system.
training and initialize the UBM. After using HTK to build thai-
tial models, we switch to our ow@++-based framework for further 6. TRAINING PROCEDURE
training and decoding. Our tools for training and decodiagesim-
ilar command-line options to the HTK tooldERest andHVite.  The training procedure for our SGMM models is as follows. Wie i
We use the phonetic context tree of the HTK baseline models ifialize the UBM by clustering the diagonal Gaussians in tié<H
our own system. Training and testing in our framework is dase derived HMM set tol = 400 Gaussians. We then train the UBM
on Weighted Finite State Transducers (WFST) [13], for whigh  for eight iterations of full-covariance E-M on the full tréing set
use the OpenFST tools and library [14]. We use WFSTSs to obtaifvithout class labels. We initialize the SGMM model from thB\
finite state acceptors at the HMM-state level for our traniran-  as described in [4], with the subspace dimensiotihe same as the
scripts, and on the first few iterations of training, our toevaluate  feature dimensio + 1 (i.e. S = 39 + 1 = 40) and the matrices
the Viterbi path through this acceptor based on likelihomdscom- M initialized such that the last 39 dimensionsof,, are inter-
pute from the HTK models. Later iterations of training aredéson  preted as global offsets on the GMM’s means. The initial SGMM
a Viterbi alignment using our SGMM models’ likelihoods. @&e  model's mean and variance parameters are the same as thetUBM i
ing is done by reading in a Finite State Acceptor which corsiéiie  each state of the HMM. We train in epochs of 8 iterations. At th
information compiled from the phonetic context tree, theden, beginning of every epoch starting from the third epoch, wi spb-
and the language model which we built using SRILM tools [15]. states up to some target value, perturbing the split vestiyistly as
For WER results we report here, we used the NIST scoring toofiescribed in [4]; sub-states are allocated proportionabtae small
sclite. power (0.2) of the state count. On each iteration but the firesty we
Our SGMM training and evaluation code makes heavy use ofrain all parameter types exceM;, which are trained every other
matrix operations, and for this we create@&+ wrapper for stan- iteration. On the very first iteration, we only updatg,,. Within
dard matrix and vector libraries implementeddnWe used parts of €ach update phase, we updatgfor three iterations.
ATLAS, CLAPACK andTNT. We intend to release the code under an
open-source license; contact the authors for details. 7. RESULTS

T - ) ) ) o In Table 1, we show unadapted English results, with varioodim
In fact, the first author has done experiments in which diagam-  fications to show the relative importance of different feasuof the

verse variances were made a linear functionvgf,, with flooring e.g. model. The SGMM system has a subspace dimension of 40. The
= min(kid, Pia - Vjm)- This flooring sidesteps the issue of ensur- o, 115 in Table 1 were obtained with a bigram language motte!

o2 jmid
ing positivity, but it introduces difficulties for fast deding. This is because | ;5e( this for speed of turnaround and to keep memory reqairem
low in decoding; in the text we give selected trigram results

to make the likelihood evaluation fast we need to remembéctwh m, ¢,
were floored which is hard to do within acceptable memorytmiVe com-

bined this with a Semi-Tied Covariance transform [10] pér place of the The baseline WER is 54.7%; we tuned the size of the baseline
full covariances pef. No word error rate improvements were seen, althoughSystem for best WER. The best SGMM result is 49.3%, for a 5.4%
test-data likelihoods did improve. absolute (9.9% relative) WER reduction. Comparing the frsd



GMM: 54.7 (1800 states, 16 Gauss/state)
#Substates
1800 2700 4k 6k 9k 12k 16Kk

SGMM: 516 50.9 50.6 50.1 49.949.3 494
Diag-var: 55.7 55.3 545 539 54.153.7 53.8
Fix-X;: 535 527 524 523 518 518515
Fix-w;: 615 605 59.3 582 57.6 56.756.2
Fix-M,;: 61.0 60.2 589 572 558 542531

strained MLLR transforms with this model [3] and show how we a
able to leverage out-of-domain data to further improveraates [2].
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