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ABSTRACT

We perform large margin training of HMM acoustic parameters
by maximizing a penalty function which combines two terms. The
first term is a scale which gets multiplied with the Hamming dis-
tance between HMM state sequences to form a multi-label (or se-
quence) margin. The second term arises from constraints on the
training data that the joint log-likelihoods of acoustic and correct
word sequences exceed the joint log-likelihoods of acoustic and
incorrect word sequences by at least the multi-label margin be-
tween the corresponding Viterbi state sequences. Using the soft-
max trick, we collapse these constraints into a boosted MMI-like
term. The resulting objective function can be efficiently maxi-
mized using extended Baum-Welch updates. Experimental results
on multiple LVCSR tasks show a good correlation between the ob-
jective function and the word error rate.

1. INTRODUCTION

Recently there has been a lot of interest in large margin approaches
for training HMMs in speech recognition [1, 2, 3]. We previ-
ously introduced the technique of Boosted MMI [4] which uses
the traditional framework of MMI training involving lattices and
Extended Baum-Welch updates, but incorporates ideas from large
margin classification. In this paper we make the connection to
large margin more explicit and propose modifications that draw
directly from large margin techniques, and serve to optimize an
arbitrary factor that we introduced in our previous work.

Chronologically, the first application of large margin training
for ASR appears to have been done in [1] and related references.
Here, the authors use a generalized probabilistic descent algorithm
to maximize a quantity termed relative margin which is one minus
the ratio between the likelihood of the closest competitor and the
likelihood of the correct sentence. One potential shortcoming of
this Maximum Relative Margin Estimation (MRME) technique is
that it doesn’t handle well variable length utterances. This ob-
servation has been exploited in [2], where the authors propose a
Soft-Margin Estimation (SME) technique which has the advantage
of incorporating utterance length normalization. In addition, the
SME objective function balances margin maximization and con-
straints violation which we are also advocating in this paper. How-
ever, both MRME and SME only deal with the closest competitor
sentence and we feel that this can be a limiting factor especially
for LVCSR.

Concomitantly, in [3] the authors propose a large margin train-
ing technique for ASR which has some appealing properties. First,
they deal efficiently with an exponential number of constraints by
using a “soft-max” trick. Second, they incorporate the margin def-
inition proposed in [5] for sequence (or multi-label) classification
which, in this case, becomes the scaled Hamming distance be-
tween HMM state sequences. Interestingly, the authors consider

the margin scale to be a constant (i.e. 1) and only optimize the
amount by which the margin constraints are violated given this
fixed scale. Another characteristic of their approach is a particu-
lar parameterization of the Gaussian means and covariances which
allows them, under some assumptions, to formulate and solve a
convex optimization problem.

We differ with [3] in two important aspects: in our case, the
margin scale becomes an integral part of the objective function (as
in SME) and, more importantly, we use Extended Baum-Welch
for the optimization by exploiting the connection with MMI as
opposed to resorting to gradient descent procedures. Additional
minor differences have to do with the consideration of language
model scores and with the removal of the hinge function which
leads to a smooth objective function.

The remainder of this paper is organized as follows. Section 2
introduces the large margin framework and shows how we can
naturally adapt this to a MMI-like update for HMMs; Section 3
provides some experimental results on two LVCSR tasks and Sec-
tion 4 summarizes our findings.

2. LARGE MARGIN TRAINING

2.1. General setting

We are given a set of training vector sequences with corresponding
label sequences {(X1, Y1), . . . , (Xr, Yr), . . . , (XR, YR)},
Xr = xr1, . . . , xrTr

, Yr = yr1, . . . , yrTr
, xrt ∈ IRn, yrt ∈ Y

where Tr = |Xr| = |Yr| represents the length of the sequences
Xr and Yr. The idea is to form a discriminant function D(X, Y )
which has as arguments vector sequences and label sequences such
that

D(Xr, Yr) ≥ D(Xr, Y ), ∀ Y 6= Yr, |Y | = Tr (1)

i.e. we want the discriminant function for the correct label se-
quence to be higher than for competitor label sequences of the
same length. Furthermore, D(Xr, Yr) has to exceed D(Xr, Y )
by some positive quantity termed the margin. Maximizing this
margin will increase the difference between the scores of the true
label sequence and the closest competitor which, in turn, will in-
crease the confidence of the classification. Since we are predicting
multiple labels, we want to generalize the notion of margin to take
into account the number of labels that are misclassified. In partic-
ular, we would like the margin between Yr and Y to scale linearly
with the number of different labels in Y as in [5]. One possibility
is to define the margin between Yr and Y as the scaled Hamming
distance ρH(Yr, Y ) where:

H(Yr, Y ) :=

Tr
∑

t=1

I(yrt 6= yt) (2)



and I(·) is the 0 − 1 loss (or indicator) function. ρ > 0 represents
the margin scale. Armed with these simple definitions, we can
formulate the margin constraint between Yr and Y as:

D(Xr, Yr) − D(Xr, Y ) ≥ ρH(Yr, Y ) (3)
Note that this inequality is trivially satisfied for Y = Yr. We

can therefore include the case Y = Yr in the subsequent deriva-
tions. Assuming the previous inequalities hold for multiple ρ’s, it
is natural to search for the maximum ρ subject to the constraints
of (3). We then arrive at the following fairly general setup for large
margin sequence classfication problems:

max ρ

s.t. D(Xr, Yr) − D(Xr, Y ) ≥ ρH(Yr, Y ), ∀ Y, 1 ≤ r ≤ R
(4)

This problem formulation differs from the work of [3], where
the authors assume ρ = 1 throughout their derivation and only
minimize the constraints violation part. We will adopt however
some steps from [3] which have to do with how to deal efficiently
with exponentially many constraints. One such step is to replace (3)
with the maximum constraint and reformulate (4) as:

max ρ

s.t. D(Xr, Yr) − max
Y

{D(Xr, Y ) + ρH(Yr, Y )} ≥ 0 (5)

A standard technique in optimization theory is to create a penalty
(or merit) function which combines the original objective function
with the constraints in order to form an unconstrained optimization
problem. We opt for an L1 exact penalty function1 which can be
written in the following manner cf. [6]:

max {ρ−

−
1

λ

R
∑

r=1

[

D(Xr, Yr) − max
Y

{D(Xr, Y ) + ρH(Yr, Y )}
]

−

}

(6)

where [·]− denotes the hinge function:

[x]− = max{0,−x}

and λ > 0 is the penalty parameter. By driving λ to zero, we penal-
ize the constraint violations with increasing severity. It is the case
in many practical applications that not all constraints can or should
be satisfied. A more reasonable approach is to treat these con-
straints as soft and to have λ control the trade-off between margin
maximization and constraint violation. The idea of a penalty func-
tion which balances margin and constraints has also been proposed
in [2]. We differ however significantly with [2] in that our final ob-
jective function is differentiable and considers multiple competing
sequences which can be encoded in a lattice.

The next task at hand is to obtain differentiable expressions
for the constraints. First, we can replace the maximum in (6) by a
soft-max upper bound leading to:

max

{

ρ −
1

λ

R
∑

r=1

[

D(Xr, Yr) − log
∑

Y

e
D(Xr,Y )+ρH(Yr,Y )

]

−
}

(7)
1The term “exact” means that there exists λ∗ > 0 such that for any

λ ∈ (0, λ∗], any local solution of (5) is a local solution of (6).

Next, we notice that the resulting constraint terms are always
strictly negative. Indeed,

log
∑

Y

e
D(Xr,Y )+ρH(Yr,Y )

> log
∑

Y

e
D(Xr,Y )

> D(Xr, Yr)

since the summation includes Yr. It follows that we can rewrite (7)
without the hinge function:

max

{

ρ +
1

λ

R
∑

r=1

(

D(Xr, Yr) − log
∑

Y

e
D(Xr,Y )+ρH(Yr,Y )

)}

(8)

2.2. HMM parameter estimation

Let θ be a shorthand notation for all the HMM parameters: tran-
sition probabilies, Gaussian mixture component priors, means and
covariances. We aim at finding θ∗ which maximizes an objective
function similar to (8) suitably formulated for HMM’s. In the con-
text of LVCSR, it makes sense to reason in terms of observation
sequences and word sequences and to define discriminant func-
tions of the form:

Dθ(X,W ) := log[pθ(X|W )κ
P (W )], (9)

with P (W ) being the language model probability of W which
we assume to be constant for the purpose of this discussion, and κ
being an acoustic scaling factor which will normally be the inverse
of the language model power e.g. 1

15
. pθ(X|W ) represents the

likelihood of the acoustic sequence given the word sequence and
depends on the HMM parameters θ. We define the margin between
two word sequences W and W ′ as ρH(W,W ′) where:

H(W,W
′) := H(YW , YW ′) (10)

YW , YW ′ are the Viterbi state sequences corresponding to W , W ′

and H(YW , YW ′ ) is given by (2). By rewriting (8) in terms of
word sequences and by plugging in (9) we get, after some manip-
ulations:

(θ∗, ρ∗) =

argmax
θ,ρ















ρ +
1

λ

R
∑

r=1

log
pθ(Xr|Wr)

κ
P (Wr)

∑

W

pθ(Xr|W )κ
P (W )eρH(Wr,W )















(11)
Lastly, we would like our objective function to be normalized

by the number of frames. This can be achieved by setting

λ = λ
′

R
∑

r=1

Tr

where λ′ is a constant which can be reused across tasks (in practice
λ′ = 0.5). Our constant λ′ represents the proportion of the de-
nominator in Equation 11 which we expect to consist of wrongly
labeled frames. By fixing λ′ in this way and maximizing Equa-
tion (11) over ρ, we believe we can choose an appropriate ρ in a
way that is less dependent on the task.



2.3. Connection with boosted MMI

In [4], we introduced an HMM parameter estimation technique
called boosted MMI (BMMI) which can be viewed as a variant
of MMI where we increase (or boost) the likelihood of sentences
which have more errors, thereby generating more confusable data.
It was mentioned that BMMI can be construed as imposing a soft
margin which is proportional to the number of errors in a hypothe-
sized sentence. Using the notations introduced so far, the boosted
MMI objective function is:

θ
BMMI = argmax

θ

R
∑

r=1

log
pθ(Xr|Wr)

κ
P (Wr)

∑

W

pθ(Xr|W )κ
P (W )e−ρA(Wr,W )

(12)

with A(Wr, W ) denoting the accuracy of W with respect to Wr.
The accuracy is expressed in terms of the number of correct phones
in W as in MPE [7]. Comparing (11) and (12), we notice that
the former includes the margin explicitly in the objective function
whereas, for BMMI, ρ has to be tuned manually. The second dif-
ference is more pedantic and has to do with using a frame-based,
state-level Hamming distance versus a negative phone-level ac-
curacy. Indeed, phone-based and frame-based metrics have been
found to produce similar results cf. [8] and negative accuracy ver-
sus (positive) distance leads to identical objective functions in the
model parameters modulo a constant term.

If we ignore the margin term ρ, any form of optimization that
works for (12) is obviously applicable to (11). To deal with the
margin term, we follow the suggestion in [2], namely, we try mul-
tiple values of ρ and optimize the constraints term assuming a fixed
ρ. In the end, we pick the pair (ρ∗, θ∗) which achieves the max-
imum. The hope is that the maximum is fairly broad in ρ so that
only a small number of scale values will have to be tested.

The constraints term is optimized using the Extended Baum-
Welch equations which can be found in many papers (see for in-
stance [7, 4]). The only modification has to do with the forward-
backward algorithm on the denominator lattice: for each word arc,
we add to the acoustic log-likelihood ρ times the number of incor-
rectly labeled frames during the time span of that arc. This consti-
tutes the contribution of the arc to the overall Hamming distance
of the hypothesis which contains that arc.

3. EXPERIMENTS AND RESULTS

We report some experimental results on two large vocabulary broad-
cast news transcription tasks which differ in language (English ver-
sus Arabic), amount of training data (50 hours versus 1400 hours)
and amount of speaker adaptation performed (speaker-independent
versus VTLN, FMLLR and MLLR). Both systems have penta-
phone acoustic cross-word context and cepstral mean (and vari-
ance) normalization. In this work, neither of the systems uses
feature-space discriminative transformations.

The acoustic features for the English system are 40-dimensional
vectors obtained via an LDA+MLLT projection of 9 consecutive
spliced frames of 19-dimensional PLP features which are mean
normalized on a per utterance basis. The baseline system has 2200
context-dependent HMM states and 50K Gaussians and is referred
to as the EBN50 setup in [4] meaning that the numbers in Figure 2
are directly comparable with those from our previous paper.

The acoustic features for the Arabic system are 40-dimensional
vectors obtained via an HDA+MLLT projection[9] of 9 consecu-
tive spliced frames of 13-dimensional VTLN-warped PLP features

which are mean and variance normalized on a per speaker basis.
Additionally, the features are transformed through feature-space
MLLR at both training and test time. The baseline system uses
unvowelized (or graphemic) acoustic models with 5000 states and
400K Gaussians and was trained on 1400 hours of data as opposed
to the ABN2300 setup from [4], where the models were trained
on 2300 hours of data. Also, we report results on a more recent
test-set (DEV’07 versus EVAL’06). More details about the Arabic
system can be found in [10].

For both scenarios, the experimental setup is as follows. First,
we decode the training data and generate denominator lattices with
a unigram language model using the decoder and lattice genera-
tion procedure described in [11] (with a lattice n-best degree of 8).
Next, we accumulate MMI-like statistics for the objective func-
tion (11) for various margin scale parameters ρ with per-frame
canceled statistics. Finally, we perform an EBW update with I-
smoothing to the previous iteration models. The statistics cancel-
ing method and the particular form of I-smoothing are described
in [4]. We used four iterations of EBW in both scenarios for best
results.

In Figure 1, we plot the objective function (11) for the two
tasks. More precisely, we plot (11) multiplied by λ′ = 0.5 so that
for ρ = 0 we get the per-frame MMI objective function. Observe
that, without the margin scale term (as in boosted MMI), the ob-
jective function would be monotonic decreasing in ρ reaching the
maximum for ρ = 0 (which is the MMI case). This validates the
use of the margin term in (11) to counter-balance the decrease of
the constraints term as a function of ρ.
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Figure 1: Objective functions for the English and Arabic BN sys-
tems.

In Figure 2, we present the results for the English BN system
on the RT’04 testset which comprises 4 hours of speech. The best
results were obtained for ρ = 0.2 with a broad maximum range for
ρ ∈ [0.1, 0.3]. This corresponds roughly to the region of the max-
imum of the large margin objective function depicted in Figure 1.
The lowest word error rate achieved is 21.2% and the correspond-
ing ML-trained baseline has a WER of 25.3%.

Additionally, in Table 1, we compare the performances of var-
ious discriminative training algorithms on two different testsets
(DEV’04f and RT’04). As can be seen, MPE outperforms MMI
and is outperformed by the proposed large margin technique which
is in line with our previous findings [4].
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Figure 2: Word error rates for the English and Arabic BN systems
(on RT’04 and DEV’07 respectively).

Training criterion DEV04f RT04
Maximum Likelihood 28.7% 25.3%
Maximum Mutual Information 25.3% 22.2%
Minimum Phone Error 24.7% 21.9%
Large Margin (ρ=0.2) 24.2% 21.2%

Table 1: Word error rates for different discriminative training cri-
teria on English BN.

A similar picture can be encountered on the Arabic setup,
where again, the best results are obtained for ρ = 0.2 with a broad
optimum range for ρ ∈ [0.1, 0.3] which corresponds to the opti-
mum region of the objective function. The results are presented
on the DEV’07 testset which has 3 hours of speech. The low-
est word error rate obtained is 14.2% and the corresponding ML-
trained baseline has a WER of 17.1%.

4. CONCLUSION

The main contribution of this work is to show the connection be-
tween boosted MMI and large margin training in the sense of [3].
As a side-effect, we have constructed an objective function which
attains its maximum for a margin parameter which also achieves
the lowest word error rate. The objective function arises from
turning a constrained optimization problem into a penalty func-
tion maximization problem. This penalty function is a weighted
combination of the margin scale and the constraints violation part
and can be efficiently optimized using the traditional framework
of MMI training involving lattices and Extended Baum-Welch up-
dates. While the experimental results have focused here only on
model parameter estimation, it is straightforward to extend these
ideas to feature-space discriminative training.
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