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Abstract
In this paper we show how methods for approximating phone
error as normally used for Minimum Phone Error (MPE) dis-
criminative training, can be used instead as a decoding criterion
for lattice rescoring. This is an alternative to Confusion Net-
works (CN) which are commonly used in speech recognition.
The standard (Maximum A Posteriori) decoding approach is a
Minimum Bayes Risk estimate with respect to the Sentence Er-
ror Rate (SER); however, we are typically more interested in
the Word Error Rate (WER). Methods such as CN and our pro-
posed Minimum Hypothesis Phone Error (MHPE) aim to get
closer to minimizing the expected WER. Based on preliminary
experiments we find that our approach gives more improvement
than CN, and is conceptually simpler.
Index Terms: Minimum Bayes Risk (MBR), MPE, Confusion
Networks, Speech Recognition, Lattice Rescoring

1. Introduction
The standard decoding formula used in speech recognition is
Maximum A Posteriori (MAP) which takes:

W ∗ = argmaxW P (W |O) (1)

= argmaxW P (W )p(O|W ), (2)

whereW is the word-sequence andO is the observation se-
quence. Assuming our models are correct, this is the decod-
ing rule that minimizes the Bayes’ Risk with respect to the
sentence– that is, it minimizes the probability of choosingthe
wrong sentence. If we choose someW , then the Bayes’ Risk
equals1 − P (W |O) (i.e. the sum of all the others’ probabili-
ties), so clearly we can minimize this by choosing theW with
the largest value ofP (W |O). However, speech recognizers are
typically evaluated in terms of their Word Error Rate (WER),
which is the Levenshtein distance (number of insertions plus
deletions plus substitutions) between the decoded output and
the reference, normalized by the length of the reference. Itwas
shown by an example in [7] that maximizing the sentence error
rate does not always maximize the WER.

1.1. Confusion networks

Currently there is a widely used technique, Confusion Network
Decoding [1], that attempts to exploit this difference. Con-
fusion networks are useful because they are quick to produce
from lattices1, permit combination of the outputs of different

1Lattices are graphs which compactly represent the list of alternative
word sequencesW that correspond to an utterance, together with their
timing information

decoders [2], and produce better word error rates than MAP de-
coding or (for combination of different systems) ROVER [2].
But confusion networks are conceptually rather unsatisfying as
they rely on representing the alternative word sequences asa
“sausage string” which is like a lossy compression of a lattice.

1.2. Other attempts to minimize the word error rate

There have been previous attempts to minimize the expected
Word Error Rate using techniques other than Confusion Net-
works. In [7], a method was introduced based on N-best lists.
This minimized the expected word error by computing the edit
distance of each pair of elements in the N-best list, and return-
ing the element of the N-best list that minimized the weighted
edit distance. Naively implemented, if the sentence was about L
words long, this algorithm would take about timeN2L2 which
is probably too slow, although speedups are possible. Worth-
while word error rate improvements were reported in that paper.
The decoding rule can be summarized as:

W ∗ = argminWi

N
X

j=1

P (Wj |O)E(Wi|Wj), (3)

whereE(Wi|Wj) is the number of word errors (the Leven-
shtein distance). The difficulty is that (3) is hard to compute
in a lattice.

In [3], an approximation was made which made it possi-
ble to do the computation with lattices rather than N-best lists.
Rather than the word error, the “time frame error” was used
which (in its most basic form) is simply the number of frames
on which a hypothesis differs from a reference. This makes it
quite easy to compute the best path using only a lattice. The au-
thors also introduced a parameterα which, asα → 1, attempts
to normalize for the length of the words. Results in that paper
show an lowering of word error rate, and also as expected the
sentence error rate increases.

2. Minimum Hypothesis Phone Error
Our approach is to take the approximations normally used for
Minimum Phone Error discriminative training [4] and use them
to efficiently approximate (3).

Our decoding approach is:

W ∗ = argmaxW

X

W ′

P κ(W ′|O)Acc(W ′|W ), (4)

where argmaxW is taken over an N-best list that we de-
rive from a lattice, and

P

W ′ is taken over the lattice itself.



Acc(W ′|W ) is the approximated accuracy used in MPE, which
we will explain in detail below. The acoustic scaleκ is the
acoustic scaling factor from MPE, which is normally taken to
scale the (pre-scaled) language model term back down to 1.0
and leave a scale on the acoustics only, soP κ(W ′|O) would
typically be equivalent toP (W ′)p(O|W ′)κ times a normaliz-
ing factor to make all sequences in the lattice sum to one.

2.1. Use of accuracy rather than error

The essential difference between our Equation (4) and Equa-
tion (3) is (after harmonizing the notation) the replacement of
E(W |W ′) with −Acc(W ′|W ). The Levenshtein/edit distance
is symmetric soE(W |W ′) = E(W ′|W ), and accuracy is de-
fined as the length of the reference minus the error, so (ignor-
ing the approximate calculation of accuracy) we would have
Acc(W ′|W ) = |W |−E(W ′|W ) = |W |−E(W |W ′). Thus,
the use of an accuracy instead of an error has the effect of bi-
asing decoding towards longer utterances, which leads to anin-
teresting qualitative difference between our results (which lead
to more insertions and fewer deletions) and all the standard
approaches we compare with which have the opposite effect.
Note that the reason why accuracy rather than error was used
in MPE [4] was because it was easier to approximate; the same
issue applies here. This is preliminary work and we have yet to
investigate canceling or partly canceling the term|W | (length
of W ) which is implicitly introduced by the use of an accuracy.
As a side note, the reader may have noticed that we could get
rid of the implicit term|W | by simply reversing our accuracy
expression toAcc(W |W ′), since the averaged value of|W ′|
does not depend onW . However, due to the way we approxi-
mate the accuracy this would make our lattice-based calculation
impossible.

2.2. Approximation of accuracy

Our accuracy approximation is done at a phone level (we have
also done it at the word level, as the same approach applies).
The phone accuracy of a word-sequence is a sum over contribu-
tions of all phone arcsq in the sequence, and the phone accuracy
of an arcq is defined as:

Acc(q|W ) = max
z∈W



q, z same phone → −1 + 2e(q|z)
q, z different → −1 + e(q|z)

ff

,

(5)
wherez is an arc in the reference sequenceW ande(q|z) is the
extent of overlap in time ofq andz, divided by the length of
z. We can compute this efficiently by pre-computing for each
frame a list of arcsz that include that frame. This equation
is an approximation to the notion that this accuracy needs to
be -1 for an insertion, 0 for a substitution and 1 for a correct
phone (which is surprising but correct given the definition of
accuracy).

For any proposed word-sequenceW (derived from the
N-best list) in Equation (4), we can work out the expres-
sion

P

W ′ P κ(W ′|O)Acc(W ′|W ) quite easily as follows: we
compute the posteriorsP κ(q|O) of each arc in the lattice us-
ing appropriately weighted acoustic and language model scores
(note that the superscriptκ refers to the use of these appropri-
ately weighted scores in the computation, not taking the final
probability to a power), we compute the approximated arc ac-
curacyAcc(q|W ) for each arc, and our answer is:

X

W ′

P κ(W ′|O)Acc(W ′|W ) =
X

q

P κ(q|O)Acc(q|W ). (6)

2.3. Use of N-best lists

Ideally we would like to take ourargmaxW over all sequences
in the lattice rather than just the N-best list. Because Equa-
tion (5) takes the max over a whole reference sequence rather
than referring to just one reference arc, this is not possible to do
trivially. It might be possible to pre-expand the lattice sothat
the phone identity and boundaries in a sufficiently wide context
before and after any arc were always fixed. However, this would
require some work to implement correctly. Currently we use N-
best lists, and we find that after aroundN = 20 or N = 40
we see very little change in WER. This is consistent with [7],
in which it was observed that the chosen hypothesis is almost
always in the top 10. (Note that this is expected to vary with
sentence length).

3. Experimental setup
Experiments are performed on two different corpora, named
Corpus-A and Corpus-B. Corpus-A is a data set merged from
two separate sets, one of which is Microsoft Research Asia
(MSRA) corpus that has31.5h of training data, while the other
is China Project-863(P-863) corpus that has113h of training
data [8, 9]. Because data from MSRA is gender-dependent,
uniformly spoken by young males, while data from P-863 is
gender-independent with narrower distribution in terms oftri-
phone coverage, we combined them into a144.5h corpus to
train a gender-independent cross-word triphone system using
HTK [12]. Corpus-B is a broadcast speech data set collected
from Net TV with 12.0h length in total, in which10.63h data
is employed for MPE based MAP training while1.37h data is
used as test data. Data inCorpus-B is derived from more than
10 TV channels in China, during the period July to October
2008.

Our data is coded as Mel frequency cepstral coefficients
(MFCCs) with energy rather than C0 used, plus delta and delta-
delta features giving the standard 39 dimensional feature vec-
tor. The system was first trained with MLE using data from
Corpus-A, leading to an HMM set with10 Gaussians per state
in each HMM and6k shared states in total. Then MPE crite-
rion is applied to train the HMMs with four iterations using the
smoothing-to-previous-iterationI-smoothing method [10] with
τ = 80. All training lattices for MPE are generated using
toned-syllable bigram language models (LMs) [8]. The acoustic
scaling factorκ for MPE training is set to1/12, the inverse of
the LM scale. To generate a system for broadcast speech recog-
nition, the HMMs trained with MPE are adapted with MAP
using10.63h data fromCorpus-B with τmap = 20 for MAP
smoothing, and then further iterations of MPE training are per-
formed onCorpus-B.

Recognition LMs are toned-syllable bigram LMs. For
Corpus-A all training transcriptions in the corpus are used to
build LMs, while for the broadcast speech, transcriptions from
both corpora are merged to build LMs.

Evaluation is performed on two test sets. One is MSRA
test data that has500 utterances with0.74h data in total and
19.1 syllable words per utterance; the other is a1.37h broad-
cast news dataset with1212 utterances, with on average19.9
syllable words per utterance. The former is gender dependent,
in-office recorded and clean (read by25 young males and20
utterances for each), while the latter (which we call BDC) is
gender independent, and contains news broadcast, review, and
conversations [9]. Baseline results from Viterbi rescoring of the
lattices are shown in Table 1. These are essentially the sameas



if we had obtained the one-best path directly from the decoder.
Note that WER results are neither true word error rate re-

sults as normally reported for English, or Character Error Rate
results as normally reported for Chinese, but are based on toned-
syllable errors. Syllables roughly correspond to Chinese char-
acters and the results are therefore similar to Character Error
Rate results. The word unit used for Consensus experiments is
the toned-syllable unit.

Insertion penalties and language model weights were tuned
to optimize the baseline Word Error Rate (as defined above).
The values used were 12 for the LM scale and a word insertion
penalty of 20.

Table 1: Baseline decoding results (WER)
Training methods MSRA BDC

MLE 26.41% -
MPE 23.85% -

MPE+MAP - 33.81%
MPE+MAP+MPE - 30.60%

Table 2: Properties of the test lattices
Test sets WGDensity WGDepth GER
MSRA 58.21 41.96 6.16%
BDC 88.67 72.65 9.61%

Table 2 shows the properties of the lattices for the two test
sets. WGDensity means word graph density, defined as over-
all number of word arcs contained in the lattice divided by the
number of actually spoken words [11], while WGDepth means
word graph depth, defined as the average number of word arcs
per time frame [5]; and GER is graph error rate, sometimes
referred to as Oracle error rate2. These lattices should be con-
sidered medium sized based on [5,11].

4. Experimental results
Figure 1 illustrates MHPE performance with varyingN on the
two sets, using our more basic models (ML for MSRA, and
MPE+MAP for BDC). We can see that after aroundN = 40,
further improvements are inconsistent. Results in the tables are
given withN = 40.

Table 3: Baseline vs. MHPE on MSRA test data.

Methods
MSRA (MLE, N=40)

#ins #sub #del SER WER
Base 24 2333 171 95.40% 26.41%

MHPE 51 2319 107 95.40% 25.88%
∆ +27 -12 -64 -0.0% -0.53%

From Tables 3 and 4, the N-best implementation for the
proposed MHPE lattice scoring method gave2.0% and3.6%
relative Word Error Rate (WER) reduction on the two test data
sets respectively. Note that the ratio of insertions to deletions in-
creases, which is opposite to the normal case for these kindsof
methods but expected based on the nature of our scoring func-
tion. The sentence error rate did not show a consistent change,
unlike [1,3] where it increased.

2GERs are obtained by the posterior probability based CN method,
and are overestimates of the true GER.
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Figure 1: WER versusN .

Table 4: Baseline vs. MHPE on BDC test data.

Methods
BDC (MAP,N=40)

#ins #sub #del SER WER
Base 114 7065 963 98.02% 33.83%

MHPE 187 7014 651 98.18% 32.62%
∆ +73 -51 -312 +0.16% -1.21%

Tables 5 and 6 show results on MPE trained models for
the MSRA and BDC datasets respectively. We see an even
larger improvement than on the ML trained models, with4.0%
and5.0% relative WER reductions over the baseline decoding
method. We also do not see a sentence error rate degradation.

Table 7 shows the comparison of all of our MHPE results
with the CN technique. In all cases the MHPE result is bet-
ter than the CN result. The insertion and deletion rates are not
shown, but as expected the CN results have more deletions than
the baseline, opposite to the MHPE case. The language model
scale was tuned to optimize the baseline performance; in thefu-
ture we intend to do MHPE and CN experiments at a range of
language model scales as we anticipate that this will affectthe
relative performance.

5. Conclusion and further work
We have introduced a new decoding method for lattice rescoring
that aims to get closer to the Minimum Bayes Risk decision rule
with respect to the Word Error Rate. We have overcome some of
the computational problems that these types of techniques suffer
from, by using the same approximations used in MPE training.
We still use an N-best list, but in a much more manageable way
than, for example [7].

We have shown promising initial results, basically demon-
strating that our technique gives substantial improvements ver-
sus the traditional “MAP rule” decoding approach. Further



Table 5: Baseline versus MHPE on MSRA test data.

Methods
MSRA (MPE, N=40)

#ins #sub #del SER WER
Base 26 2074 183 94.60% 23.85%

MHPE 47 2035 108 93.40% 22.90%
∆ +21 -39 -75 -1.20% -0.95%

Table 6: Baseline versus MHPE on BDC test data.

Methods
BDC (MPE,N=40)

#ins #sub #del SER WER
Base 109 6296 959 96.45% 30.60%

MHPE 178 6254 568 96.20% 29.08%
∆ +69 -42 -391 -0.25% -1.52%

work needs to be done to see in more detail how the perfor-
mance compares with Confusion Networks (CN) [1] and with
frame-by-frame approximations such as [3]. We also need to
investigate what effect our use of an accuracy versus an error
in Equation (4) has and what happens if we attempt to cancel
the effect by including a term in our objective function propor-
tional to the length of the word-sequence. Another thing that
needs more investigation is the effect of using phone versus
word accuracy; preliminary experiments have not shown any
clear difference.

In order to have the same utility as CN, an approach like this
needs to be able to support lattice combination, as in CNC [2].
This might seem simple in principle – e.g. in (3) and (4), sum
over the word-sequences in all the parallel lattices ratherthan
just one. However, in practice it might be difficult to do because
word alignments will differ between systems which means so
our time-based approximations may not work, and also because
we cannot limit ourselves to choosing hypotheses from the in-
dividual N-best lists but need to choose “combined” hypothe-
ses. However, these problems are solvable; for instance, tore-
move the overly strict dependence on time alignment one could
consider ways to efficiently calculate or approximate the Lev-
enshtein distance in a sequence-vs-lattice context, and wehave
some ideas on how to do this. The aim would be to get the same
or better results as Confusion Networks (CN) and Confusion
Network Combination (CNC) but with less severe approxima-
tions.
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