
THE SYMMETRIC SUBSPACE GAUSSIAN MIXTURE MODEL
TECHNICAL REPORT MSR-TR-2010-138

Daniel Povey

Microsoft,
One Microsoft Way, Redmond, WA 98052

dpovey@microsoft.com

ABSTRACT

This document describes an extension of the Subspace Gaussian
Mixture Model (SGMM). The extension is a symmetrization of the
model, which makes the speaker and speech-state subspaces behave
in the same way. The difference relates to the way the Gaussian
weights within the substates are handled: now they depend onthe
speaker vector as well as the speech-state vector. This requires a
little more per-speaker computation (to compute certain per-speech-
state normalizing factors), but the main cost is in additional memory.
The memory consumed by the model is almost doubled as we need to
store in memory a new precomputed quantity. However, this method
gives quite respectable WER improvements and it seems likely that
it would give even greater WER improvements in situations where
the number of Gaussians per speech-state is larger (i.e., with more
data).

Index Terms— Speech Recognition, SGMM, Symmetric
SGMM

1. INTRODUCTION

We assume at this point that the reader has already read the CSL pa-
per [1] that describes the basic Subspace Gaussian Mixture Model
(SGMM). The complete version of that model, with speaker adapta-
tion and sub-states, can be written as follows (we omit the CMLLR
adaptation since it is a feature-space transform that does not interact
directly with what we are doing here):

p(x|j, s) =

Mj
X

m=1

cjm

I
X

i=1

wjmiN (x; µ
(s)
jmi,Σi) (1)

µ
(s)
jmi = Mivjm + Niv

(s) (2)

wjmi =
expwT

i vjm
PI

i′=1 expwT
i′
vjm

. (3)

The modification we introduce here is quite a simple one: to make
the sub-state weightswjmi a function of the speaker vector in addi-
tion to the speech-state vector, so:

w
(s)
jmi =

exp(wT
i vjm + uT

i v(s))
PI

i′=1 exp(wT
i′
vjm + uT

i′
v(s))

. (4)

This just introduces a term that was natural but which we previously
omitted because it makes things more complicated to estimate. The
reasoning for making the effort to re-introduce it, is: we found in [1]
that the sub-state weights were quite important in the phonetic part
of the model, so they may also give a substantial improvementto the

speaker vector adaptation. We can imagine models in which there
are “male” and “female” indexesi, and these would be switched on
and off by the speaker vectors. Of course this would all be automat-
ically learned from data, without any explicit labels for gender or
other such factors.

This technical report describes how we extend the fast likelihood
computation and optimization methods described previously, to the
extended model described in Equation (4).

In Section 2 we give an overview of the issues introduced by the
change in the model and attempt to give the reader a sense of how
we solve the resulting problems. In Section 3 we demonstratethe
manipulations we use to obtain the auxiliary functions usedin our
update formulas. We do not provide the detailed derivation of all the
auxiliary functions, but Section 3 does provide enough detail that
the interested reader should be able to reconstruct those derivations.
Section 4 describes the changes in the likelihood evaluation formulas
that are necessary with this new model. Section 5 provides the new
(and altered) accumulation and update formulae that we use with this
new model.

2. OVERVIEW

2.1. Likelihood evaluation

The term in the likelihood that is changed versus the baseline model
is the termlog w

(s)
jmi. In order to more easily discuss this, and intro-

duce terms we will use later, we define the un-normalized weights
bjmi andb

(s)
i as follows:

bjmi = expw
T
i vjm (5)

b
(s)
i = expu

T
i v

(s). (6)

Defining a normalizing factor as follows:

b
(s)
jm =

X

i

bjmib
(s)
i , (7)

we can write the normalized weight as:

w
(s)
jmi =

bjmib
(s)
i

b
(s)
jm

. (8)

Sinceb
(s)
i is efficient to compute, andb(s)

jm can be computed fairly

efficiently as a dot-product between a vector ofbjmi andb
(s)
i (with

i as the vector index), we can compute likelihoods fairly efficiently.
We organize these computations in such a way that we don’t have to
computelog or exp functions on each frame, since these are fairly
expensive functions to compute.

1

In the resulting computations, it would be most natural to define
the per-Gaussian normalizernjmi that we precompute, to contain
log bjmi rather than the normalized weightlog wjmi. This would
lead to inconvenience when we compute likelihoods without speaker
adaptation (i.e. withv(s) = 0), because we have to do the extra step
of computingb

(s)
jm (with unit b

(s)
i), which requires either extra per-

speaker computation or a small amount of extra storage. To avoid
this we actually do the normalizations above slightly differently: we
definewjmi as the weights without speaker adaptation, i.e. as in
Equation (3), and write

d
(s)
jm =

X

i

wjmib
(s)
i (9)

w
(s)
jmi =

wjmib
(s)
i

d
(s)
jm

. (10)

This has the additional advantage of keeping the computations re-
quired to computed(s)

jm within a better numeric range (i.e. we are
less likely to encounter numerical overflow or underflow). Wehave
introduced two different forms of the speaker-specific weight com-
putation because, while Equation (10) represents the way weactu-
ally do the computations, Equation (8) is conceptually cleaner and is
the way we can most easily derive some of the update formulae.We
can demonstrate that when using our statistics accumulatedusing
the second version of the computation, the resulting computations
produce the same result as when using the first, more natural form.

2.2. Parameter estimation

Some changes are introduced into the parameter estimation formu-
lae by the change in the formula for the weights. There are three
parts of the estimation formulae that are changed: the estimation
of the speaker vectorsv(s) and speech-state vectorsvjm, and the
speech-state weight projectionswi. There is also a new estimation
introduced, for the speaker-space weight projectionsui. So there
are four types of parameter estimation that we need to address, cor-
responding to the four parameter types appearing in Equation (4).
We give an overview of the issues here; in Section 5 we will give the
detailed accumulation and update formulae.

2.2.1. Change in speech-state vectors and weight projections esti-
mation

The estimation of the speech-state vectorsv(s) and weight projec-
tions wi are the ones that, in terms of formulae, change the least,
but at the same time they introduce the most inconvenience. The
estimation formulae for forv(s) andwi described in [1] both refer
to the quantitywjmi. Using the “symmetric” model, we have to re-
place this with a quantity we call̃wjmi which is an appropriately
weighted average of the speaker-adapted weightsw

(s)
jmi. The update

formulae are not changed except for this replacement. The reason
this is inconvenient is that we need to store additional statisticsajmi

in order to computẽwjmi, and these statistics occupy a lot of mem-
ory: they are the same size as the per-Gaussian countsγjmi, which
are typically larger than any of the other statistics types in the model
previously described. Therefore, the size of the statistics, as well as
the size of the model, is nearly doubled by this change.

2.2.2. Change in speaker vectors estimation

The estimation of the speaker vectors changes qualitatively when we
symmetrize the model. Our previous estimation just solves alin-

ear system of equations. In the symmetric model it becomes more
like the the speech-state vectors estimation, where the weight-related
terms introduce difficult nonlinearities and force us to make approx-
imations. The update process is very similar to the process for up-
datingvjm, except we use an iterative solution. In the estimation
for vjm we just used a single iteration in the update phase, since it is
part of a larger iterative process; in the estimation of the speaker vec-
torsv(s), since we start from zero each time we see a new speaker,
and typically accumulate statistics just once or twice, it is more im-
portant to iterate in the update phase.

2.2.3. Estimation of speaker-space weight projections

The estimation problem that is new for this model is that of the
speaker-space weight projectionsui. This problem is essentially the
mirror-image of the problem of estimating the quantitieswi. The
difficulty is that in order to do it the same way, we need to store per-
speaker statistics, i.e. the vectorsv(s) and certain count-like quan-
tities (of sizeI per speaker). Previously we have avoided storing
any quantities that scale with the number of speakers, because for
very large corpora these could become large. The solution wehave
adopted is to describe two separate update methods: one which is
“more exact” and is a precise mirror image of the estimation pro-
cedure forwi (but which involves accumulating per-speaker statis-
tics), and one which is “less exact” and which avoids accumulating
any per-speaker statistics. The less exact method involvesstoring
statistics sufficient to form a local quadratic approximation to the
auxiliary function in eachwi. It is equivalent to one iteration of the
more exact method, except without certain convergence checks.

3. DERIVATIONS FOR OPTIMIZATION FORMULAE

In this section we present a partial derivation for some of the new
optimization formulae. The intent is to introduce the new ideas used
in the optimization, but not to provide a complete derivation. The
main new idea described here is the way we use Jensen’s inequality
in the reverse sense to the way it is normally used, to move alog
function out of, rather than into, a sum. The reason we can apply it in
a reverse sense is that the term involved contains a negated logarithm
(− log b

(s)
jm).

Consider the formula for the weights, expressed in terms ofbjmi

and other quantities as in Equation (8). The numerator of this for-
mula does not present any problems as its log is linear in eachof the
quantitieswi, ui, vjm andv(s). Any difficulties for optimization
arise from the denominator. Let us writeQ1 for the partial auxiliary
function containing just this problematic term:

Q1 = −
X

j,m,s

γ
(s)
jm log b

(s)
jm (11)

= −
X

j,m,s

γ
(s)
jm log

X

i

bjmib
(s)
i . (12)

We are going to use the convexity of− log, and Jensen’s inequality,
to push thelog to the left past the outer summations. To do this, we
need to renormalize so that, at the parameter values we accumulated
with, we are taking the logarithm of 1. Let us use a bar (e.g.b̄

(s)
jm) to

represent a quantity considered as a constant, i.e. evaluated with all
parameters the same as they were during accumulation. We rewrite
Equation (12) as follows:

Q2 = −
X

j,m,s

γ
(s)
jm log

P

i
bjmib

(s)
i

b̄
(s)
jm

. (13)

2

This is the same asQ1, but with a constant offset. Our use of no-
tation here is that by numbering themQ1 andQ2, we imply the
following relationship. If we write the parameters asΛ, we will
have

Q2(Λ)−Q2(Λ̄) ≤ Q1(Λ)−Q1(Λ̄), (14)

whereΛ̄ is the parameter values used in accumulation; i.e. the in-
crease inQ1 will be at least as much as the increase inQ2. The same
would apply forQ3 versusQ2, and so on. In order to apply Jensen’s
inequality we also need weighting factors that sum to one. Defining

γ =
X

j,m,s

γ
(s)
jm, (15)

we can rewriteQ2 as:

Q2(Λ) = −γ
X

j,m,s

γ
(s)
jm

γ
log

P

i
bjmib

(s)
i

b̄
(s)
jm

. (16)

We can then apply Jensen’s inequality and write:

Q3(Λ) = −γ log
X

j,m,s

γ
(s)
jm

γ

P

i
bjmib

(s)
i

b̄
(s)
jm

. (17)

At this point, there are two directions we can go in, depending which
parameter we are optimizing. In some situations it is most conve-
nient to get rid of thelog entirely. In this case, we can use the
inequality− log(x) ≥ −x + 1 (with equality atx = 1), to write
(cancelling theγ):

Q4(Λ) = −
X

j,m,s

γ
(s)
jm

P

i
bjmib

(s)
i

b̄
(s)
jm

(18)

Since the quantitiesbjmi andb
(s)
i are exponential in the parameters,

the next step is generally to make a quadratic approximationto the
exp function (i.e. quadratic in whatever quantity we are optimizing),
and solve the resulting linear system to get a proposed step.This will
generally be part of an iterative process in the udpate phase. The
other direction we can go fromQ3 is to forget the1/γ inside thelog
(which is just a constant offset), and write:

Q4′(Λ) = −γ log
X

j,m,s

γ
(s)
jm

P

i
bjmib

(s)
i

b̄
(s)
jm

. (19)

This generally appears as part of a larger auxiliary function that is
further optimized: the difference from Equation (18) is that in the
auxiliary function that we are optimizing, we retain thelog, rather
than getting rid of it. The same quadratic approximations would still
be made one each iteration.

4. CHANGES IN LIKELIHOOD EVALUATION
FORMULAE

In this section we describe how the likelihood evaluation formulae
change with the symmetrized model.

4.1. Global and speaker-specific pre-computation

The normalization constantnjmi which we compute per Gaussian is
unchanged. We repeat the formula for easy reference:

njmi = log cjm + log wjmi

− 1
2

“

log detΣi + D log(2π) + µ
T
jmiΣ

−1
i µjmi

”

(20)

We now also need to store in memory the quantitieswjmi. These
will be used in a per-speaker phase of the computation to compute
the normalizing factorsd(s)

jm.
If we are doing speaker adaptation, then for each speaker we

also need to compute the speaker-specific quantities. Note that these
would typically be computed on the fly as we see each speaker. As
before, we have the speaker offsets:

o
(s)
i = Niv

(s). (21)

To handle the speaker-specific weights we also need to compute the
following quantities:

b
(s)
i = expu

T
i v

(s) (22)

d
(s)
jm =

X

i

b
(s)
i wjmi. (23)

It would be most convenient to first compute and storelog b
(s)
i , and

then computeb(s)
i , which would then be used to computed

(s)
jm via

dot products between vectors. The quantitiesd
(s)
jm sould be stored in

the formlog d
(s)
jm.

The process of Gaussian selection is the same as in the previ-
ously described SGMM.

4.2. Pre-computation per frame

With the symmetric model, we change the way we compute the
quantityni(t) (for pre-selected indicesi). It now contains the quan-
tity log b

(s)
i :

ni(t) = log |detA(s)| − 1
2
xi(t)

T
Σ

−1
i xi(t)

+ log b
(s)
i . (24)

Quantities in Equation (24) that we have not separately introduced
are as described in [1].

4.3. Gaussian likelihood computation

We compute the contribution to the likelihood from statej, mixture
m and Gaussian indexi as:

log p(x(t),m, i|j) = ni(t)+njmi + zi(t) ·vjm− log d
(s)
jm. (25)

The new term here is− log d
(s)
jm, which of course we store as a

log quantity (so we don’t have to evaluate the log function oneach
frame). Alsoni(t) contains a new term which was absent in the
original model.

5. NEW ACCUMULATION AND UPDATE FORMULAE

In this section we describe the new and modified accumulationand
update formulae. Section 5.1 describes how the speaker vectorsv(s)

are computed. Section 5.2 introduces the new statistics we now need
to accumulate in order to updatevjm andwi. Sections 5.3 and 5.4
describe the changes in the update equations forvjm andwi respec-
tively. Sections 5.5 and 5.6 describe the more exact, and theless
exact (but more scalable) versions of the update equations for the
speaker-space weight projectionsui.

3

5.1. Speaker vector estimation

A new element is introduced into the speaker vector estimation
through the effect of the speaker vectors on the weights. There are
two new terms: an easy one and a hard one. The easy one is just the
linear effect of the speaker vector on the log probabilities:

Q(v(s)) = . . . +
X

i

γ
(s)
i u

T
i v

(s). (26)

We don’t need any any additional statistics to model this, sinceγ
(s)
i

is already one of the quantities we accumulate in order to update the
speaker vectors.

The other new term, the hard one, is the “normalizer” term, and
this is of the following form, after some manipulations as described
above to take the log outside the sum. Note that we write these
equations, corresponding to the actual implementation, interms of
wjmi and d

(s)
jm instead ofbjmi and b

(s)
jm. This harder part of the

auxiliary function is:

Q1(v
(s)) = . . .− γ(s) log

X

j,m

γ
(s)
jm

γ(s)

P

i
wjmib

(s)
i

d̄
(s)
jm

(27)

Q2(v
(s)) = . . .− γ(s) log

X

i

a
(s)
i b

(s)
i (28)

a
(s)
i =

X

j,m

γ
(s)
jm

wjmi

d
(s)
jm

(29)

=
X

t∈T (s)

X

j,m

γjmi(t)wjmi

d
(s)
jm

, (30)

and note that we remove the bar from̄d(s)
jm in the equation fora(s)

i

since it is obvious in accumulation equations that we are treating
the parameters as fixed. It is the second form ofa

(s)
i , as written in

Equation (30), that we actually use for accumulation. This is less
efficient than Equation (29), but it is more convenient and this part
of the accumulation does not dominate the computation time.Also
note that we would actually have to compute Equation (30) before
we have estimated the speaker vector for speakers, which means
that we would havev(s) = 0 and henced(s)

jm = 1. Therefore the
denominator of Equation (30) may seem pointless, but it would have
an effect if we did more than one iteration of E-M to update the
speaker vectors. We can write the complete auxiliary function as
follows:

Q2(v
(s)) = y

(s) T
v

(s) +
X

i

γ
(s)
i u

T
i v

(s)

−
1

2

X

i

γ
(s)
i v

(s) T
N

T
i Σ

−1
i Niv

(s)

−γ(s) log
X

i

a
(s)
i b

(s)
i (31)

The update forv(s) is now mostly analogous to the update forvjm,
except that we use the following definition:

w̃
(s)
i ≡

a
(s)
i b

(s)
i

P

i
a
(s)
i b

(s)
i

. (32)

Thus,w̃(s)
i is the “normalized” version of the speaker weights (i.e.

normalized to sum to one), but normalized with respect to thestatis-
tics a

(s)
i . This quantity will appear in the update equations in the

same places thatwjmi appears in the update equations forvjm. Note
that whenw̃(s)

i appears in equations we will treat it as a shorthand
for the right hand of (32). It should be recomputed each time from
the current values ofb(s)

i .
We now describe the speaker vector update. It is an iterative

process with iterationsp = 1 . . . P . We write thep’th iteration of the
speaker vector asv(s,p), and if we are on the first iteration of the E-M
process we would be starting fromv(s,0) = 0. On each iteration we
form a quadratic approximation to the auxiliary function. Defining
v(s,p) = d + v(s,p−1), we approximate (28) as a quadratic, with:

Q(p)
3 (d) ≃ g

(p)
d−

1

2
d

T
F

(p)
d, (33)

whereg(p) andF(p) are defined as follows. First, we writeH(s) as
the quadratic term from the old equations:

H
(s) =

I
X

i=1

γ
(s)
i N

T
i Σ

−1
i Ni (34)

Then we define

g
(p) = y

(s) +

I
X

i=1

(γ
(s)
i − γ(s)w̃

(s,p−1)
i)ui

−v
(s,p−1)

H
(s), (35)

where the last term is needed due to the change from an “abso-
lute” to “offset-based” representation of the auxiliary function, and
w̃

(s,p−1)
i is defined as in Equation (32) but withb(s)

i written instead
asb

(s,p−1)
i = exp(ui · v

(s,p−1)). We defineF(p) as:

F
(p) = H

(s) +

I
X

i=1

γ(s)w̃
(s,p−1)
i uiu

T
i . (36)

The solution is then:

v
(s,p) = v

(s,p−1) + solve vec(F(p),g(p), 0, Kmax). (37)

There is the potential for non-convergence here, but I consider it
so remote that I don’t recommend to check for it, at least for ini-
tial experiments. Note that the same issue exists for the quantities
vjmi, and in that case also we do not check for convergence. We do,
however measure and report the changes in Equation (31) on each
iterationp as a diagnostic.

As regards the derivation of this update rule:g(p) is the deriva-
tive of (31) with parametersv(s) = v(s,p−1). TheF(p) is not ex-
actly the negated second derivative of (31), but a slight overestimate
of the negated second derivative, that differs only by a rank-one cor-
rection factor. The way we derive the second term of (36) fromthe
last term of (31) is: first we use− log x ≥ − log x̄ + 1 − x

x̄
with

equality atx = x̄, and herēx corresponds to
P

i
a
(s)
i b

(s,p−1)
i with

b
(s,p−1)
i = expuT

i v(s,p−1). Ignoring constant factors, that term be-

comes−γ(s)
P

i a
(s)
i

exp u
T
i v

P

i a
(s)
i

expu
T
i
v
(s,p−1)

(corresponding to−x

x̄
, with γ(s)

as a scaling factor), and taking the second derivative of this w.r.t. v
atv = v(s,p−1), we get

−γ(s)
X

i

a
(s)
i expuT

i v(s,p−1)

P

i
a
(s)
i expuT

i v(s,p−1)
uiu

T
i (38)

= −γ(s)
X

i

w̃
(s,p−1)
i uiu

T
i . (39)

4

5.2. Additional statistics for speech-state vectors and speech-
state weight projections

We require some additional statistics in order to update thequan-
titites vjm and andwi. These are required to compute thew̃jmi

quantities that appear in the update equations. The statistics can be
defined as a sum over speakers:

ajmi =
X

s

γ
(s)
jm

d
(s)
jm

b
(s)
i . (40)

In fact, we compute them as a sum over time, as follows:

ajmi =
X

t,j,m,i

γjmi(t)

d
(s[t])
jm

b
(s[t])
i , (41)

wheres[t] is the speaker active on framet. This much less efficient
than it could be but it is more convenient, and it does not dominate
the computation time of the overall accumulation process.

5.3. Speech-state vector estimation

In computing the speech-state vectorsvjm, we use the quantity:

w̃jmi =
wjmiajmi

P

i wjmiajmi

(42)

=
bjmiajmi

P

i bjmiajmi

. (43)

with bjmi = exp(vT
jmwi), and where we use the most “updated”

forms of vjm andwi available to compute this, i.e. we usêwi if
available (in the experiments we ran,vjm was updated beforewi so
the actual value ofwi used was the un-updated value. This quantity
w̃jmi replacesŵjmi in Equations (58) and (59) of [1]. The deriva-
tion follows the general outline given in Section (3).

5.4. Speech-state weight projection estimation

In estimating the speech-state weight projectionswi, the same
change is made as above. In the auxiliary function, Equation(68)
of [1], w̃jmi replaceswjmi, and in the update equations (71) and
(72),w(p)

jmi is replaced with:

w̃
(p)
jmi =

ajmi expwT
i v̂jm

ajmi expwT
i vjm

(44)

Again, the most “updated” values ofvjm andwi available should
be used in (44); this will generally correspond to the updated values
v̂jm and whatever value ofwi we have on the current iteration.

5.5. Update of speaker weight projections: more exact version

As mentioned, we describe two versions of the speaker-spaceweight
projectionsui. We first describe the more exact version. Three types
of statistics are required for this update. Two of these are per-speaker
statistics, and are required in the update phase, so these would have
to be stored as a list. This is a qualitiatively new aspect to the up-
date procedure, as previously we were able to avoid any per-speaker
quantities being needed in the update phase.

The first type of statistic required isa(s)
i , as defined in Equa-

tion (30). We store these as a list, for all speakers. Also note that
we would use the final, speaker-adapted alignment probabilities and
speaker-dependent quantities to compute these statistics, so the value

of a
(s)
i stored in the list would not be the same as the value used to

compute the speaker vectorsv(s).
The second type of statistic required isv(s), the speaker vectors.

Again, these are stored as a list.
The third type of statistic required is:

si =
X

s

γ
(s)
i v

(s). (45)

This requires us to storeγ(s)
i =

P

t∈T (s),j,m
γjmi(t), given the

final, speaker-adapted alignments. This quantity is already needed
for some of the other computations described in [1].

The auxiliary function in{ui, 1 ≤ i ≤ I} is:

Q1 =
X

i

u
T
i si −

X

s

γ(s) log
X

i

a
(s)
i expu

T
i v

(s) (46)

In order to separate the auxiliary function over the different values of
i, and thus simplify the problem, we use the inequality− log(x) ≥
−x + 1 and write:

Q2(ui) = u
T
i si −

X

s

a
(s)
i expu

T
i v

(s). (47)

To obtain this, we use
P

i
a
(s)
i exp(uT

i v(s)) = γ(s) and theγ(s)

cancels. The optimization process is an iterative one whereon each
iteration1 ≤ p ≤ P we compute linear and quadratic termsg

(p)
i

andF
(p)
i and maximize the corresponding quadratic objective func-

tion. On each iteration we check that the auxiliary functiondid not
decrease.

The optimization procedure for a particular value ofi is as fol-
lows: Setu(0)

i ← ui (i.e. the value at input). Forp = 1 . . . P (e.g.
P = 3), do:

g
(p)
i ← si −

X

s

a
(s)
i exp(u

(p−1)
i

T
v

(s))v(s) (48)

F
(p)
i ←

X

s

a
(s)
i exp(u

(p−1)
i

T
v

(s))v(s)
v

(s) T
(49)

Then the candidate new value ofu
(p)
i is:

u
tmp = u

(p−1)
i + F

(p)
i

−1
g

(p)
i , (50)

or more safely

u
tmp = u

(p−1)
i + solve vec(F

(p)
i ,g

(p)
i ,0, Kmax) (51)

with solve vec as defined in [1], and then we do as follows: while
Q2(u

tmp) < Q2(u
(p−1)
i), withQ2 defined as in Equation (47), set

u
tmp ←

1

2
(utmp + u

(p−1)). (52)

Then (once the auxiliary function is no longer worse than before),
setu(p) ← utmp.

At the end we set̂ui ← u
(P)
i .

5.6. Update of speaker weight projections: less exact version

For the less exact version of the computation of the speaker weight
projections, we avoid storing any lists of speaker-specificquantities
and instead accumulate statistics sufficient to form a localquadratic

5

approximation of the auxiliary function, which we directlymaximize
in the update phase. In this case we store the following statistics:

ti =
X

s

“

γ(i)
s − a

(s)
i b

(s)
i

”

v
(s) (53)

Ui =
X

s

a
(s)
i b

(s)
i v

(s)
v

(s) T
. (54)

The auxiliary function we maximize is as follows, where∆i is the
change inui:

Q3(∆i) = t
T
i ∆i −

1

2
∆T

i Ui∆i, (55)

and our update equation iŝui ← ui + ∆i, or more generally, to
handle the singular cases,

ûi ← ui + solve vec(Ui, ti,0, Kmax), (56)

with the functionsolve vec as defined in [1].

6. REFERENCES

[1] D. Povey, Lukáš Burget, et al., “The Subspace GaussianMixture
Model – a Structured Model for Speech Recognition,”Com-
puter Speech and Language (accepted), 2010.

6

